Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D938-D949, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000386

RESUMO

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.


Assuntos
Bases de Dados Factuais , Doença , Genes , Fenótipo , Humanos , Internet , Bases de Dados Factuais/normas , Software , Genes/genética , Doença/genética
2.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38383067

RESUMO

MOTIVATION: Creating knowledge bases and ontologies is a time consuming task that relies on manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrarily complex nested knowledge schemas. RESULTS: Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against an LLM to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for matched elements. We present examples of applying SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease relationships. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction methods, but greatly surpasses an LLM's native capability of grounding entities with unique identifiers. SPIRES has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any new training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. AVAILABILITY AND IMPLEMENTATION: SPIRES is available as part of the open source OntoGPT package: https://github.com/monarch-initiative/ontogpt.


Assuntos
Bases de Conhecimento , Semântica , Bases de Dados Factuais
3.
Bioinformatics ; 39(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389415

RESUMO

MOTIVATION: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking. RESULTS: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial-environmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link prediction and node classification. AVAILABILITY AND IMPLEMENTATION: https://kghub.org.


Assuntos
Ontologias Biológicas , COVID-19 , Humanos , Reconhecimento Automatizado de Padrão , Doenças Raras , Aprendizado de Máquina
4.
BMC Med Inform Decis Mak ; 24(1): 30, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297371

RESUMO

OBJECTIVE: Clinical deep phenotyping and phenotype annotation play a critical role in both the diagnosis of patients with rare disorders as well as in building computationally-tractable knowledge in the rare disorders field. These processes rely on using ontology concepts, often from the Human Phenotype Ontology, in conjunction with a phenotype concept recognition task (supported usually by machine learning methods) to curate patient profiles or existing scientific literature. With the significant shift in the use of large language models (LLMs) for most NLP tasks, we examine the performance of the latest Generative Pre-trained Transformer (GPT) models underpinning ChatGPT as a foundation for the tasks of clinical phenotyping and phenotype annotation. MATERIALS AND METHODS: The experimental setup of the study included seven prompts of various levels of specificity, two GPT models (gpt-3.5-turbo and gpt-4.0) and two established gold standard corpora for phenotype recognition, one consisting of publication abstracts and the other clinical observations. RESULTS: The best run, using in-context learning, achieved 0.58 document-level F1 score on publication abstracts and 0.75 document-level F1 score on clinical observations, as well as a mention-level F1 score of 0.7, which surpasses the current best in class tool. Without in-context learning, however, performance is significantly below the existing approaches. CONCLUSION: Our experiments show that gpt-4.0 surpasses the state of the art performance if the task is constrained to a subset of the target ontology where there is prior knowledge of the terms that are expected to be matched. While the results are promising, the non-deterministic nature of the outcomes, the high cost and the lack of concordance between different runs using the same prompt and input make the use of these LLMs challenging for this particular task.


Assuntos
Conhecimento , Idioma , Humanos , Aprendizado de Máquina , Fenótipo , Doenças Raras
5.
Virol J ; 19(1): 84, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35570298

RESUMO

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain, fever, and inflammation but have been associated with complications in community-acquired pneumonia. Observations shortly after the start of the COVID-19 pandemic in 2020 suggested that ibuprofen was associated with an increased risk of adverse events in COVID-19 patients, but subsequent observational studies failed to demonstrate increased risk and in one case showed reduced risk associated with NSAID use. METHODS: A 38-center retrospective cohort study was performed that leveraged the harmonized, high-granularity electronic health record data of the National COVID Cohort Collaborative. A propensity-matched cohort of 19,746 COVID-19 inpatients was constructed by matching cases (treated with NSAIDs at the time of admission) and 19,746 controls (not treated) from 857,061 patients with COVID-19 available for analysis. The primary outcome of interest was COVID-19 severity in hospitalized patients, which was classified as: moderate, severe, or mortality/hospice. Secondary outcomes were acute kidney injury (AKI), extracorporeal membrane oxygenation (ECMO), invasive ventilation, and all-cause mortality at any time following COVID-19 diagnosis. RESULTS: Logistic regression showed that NSAID use was not associated with increased COVID-19 severity (OR: 0.57 95% CI: 0.53-0.61). Analysis of secondary outcomes using logistic regression showed that NSAID use was not associated with increased risk of all-cause mortality (OR 0.51 95% CI: 0.47-0.56), invasive ventilation (OR: 0.59 95% CI: 0.55-0.64), AKI (OR: 0.67 95% CI: 0.63-0.72), or ECMO (OR: 0.51 95% CI: 0.36-0.7). In contrast, the odds ratios indicate reduced risk of these outcomes, but our quantitative bias analysis showed E-values of between 1.9 and 3.3 for these associations, indicating that comparatively weak or moderate confounder associations could explain away the observed associations. CONCLUSIONS: Study interpretation is limited by the observational design. Recording of NSAID use may have been incomplete. Our study demonstrates that NSAID use is not associated with increased COVID-19 severity, all-cause mortality, invasive ventilation, AKI, or ECMO in COVID-19 inpatients. A conservative interpretation in light of the quantitative bias analysis is that there is no evidence that NSAID use is associated with risk of increased severity or the other measured outcomes. Our results confirm and extend analogous findings in previous observational studies using a large cohort of patients drawn from 38 centers in a nationally representative multicenter database.


Assuntos
Injúria Renal Aguda , COVID-19 , Anti-Inflamatórios não Esteroides/efeitos adversos , Teste para COVID-19 , Estudos de Coortes , Humanos , Pandemias , Estudos Retrospectivos
6.
Genome Res ; 23(8): 1235-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23636946

RESUMO

Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.


Assuntos
Formigas/genética , Genoma de Inseto , Animais , Comportamento Animal , Sítios de Ligação , Sequência Conservada , Metilação de DNA , Evolução Molecular , Regulação da Expressão Gênica , Himenópteros/genética , Proteínas de Insetos/genética , MicroRNAs/genética , Modelos Genéticos , Filogenia , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Comportamento Social , Especificidade da Espécie , Sintenia , Fatores de Transcrição/genética
7.
BMC Genomics ; 15: 86, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24479613

RESUMO

BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.


Assuntos
Abelhas/genética , Genes de Insetos , Animais , Composição de Bases , Bases de Dados Genéticas , Sequências Repetitivas Dispersas/genética , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Peptídeos/análise , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos
8.
PLoS Genet ; 7(2): e1002007, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21347285

RESUMO

Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses.


Assuntos
Formigas/fisiologia , Genoma de Inseto/genética , Folhas de Planta/fisiologia , Simbiose , Animais , Formigas/genética , Arginina/genética , Arginina/metabolismo , Sequência de Bases , Fungos/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Análise de Sequência de DNA , Serina Proteases/genética , Serina Proteases/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(14): 5673-8, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21282631

RESUMO

Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.


Assuntos
Formigas/genética , Genoma de Inseto/genética , Genômica/métodos , Filogenia , Animais , Formigas/fisiologia , Sequência de Bases , California , Metilação de DNA , Biblioteca Gênica , Genética Populacional , Hierarquia Social , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Receptores Odorantes/genética , Análise de Sequência de DNA
10.
Proc Natl Acad Sci U S A ; 108(14): 5667-72, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21282651

RESUMO

We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.


Assuntos
Formigas/genética , Redes Reguladoras de Genes/genética , Genoma de Inseto/genética , Genômica/métodos , Filogenia , Animais , Formigas/fisiologia , Sequência de Bases , Clima Desértico , Hierarquia Social , Dados de Sequência Molecular , América do Norte , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Receptores Odorantes/genética , Análise de Sequência de DNA
11.
medRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37503093

RESUMO

Objective: Large Language Models such as GPT-4 previously have been applied to differential diagnostic challenges based on published case reports. Published case reports have a sophisticated narrative style that is not readily available from typical electronic health records (EHR). Furthermore, even if such a narrative were available in EHRs, privacy requirements would preclude sending it outside the hospital firewall. We therefore tested a method for parsing clinical texts to extract ontology terms and programmatically generating prompts that by design are free of protected health information. Materials and Methods: We investigated different methods to prepare prompts from 75 recently published case reports. We transformed the original narratives by extracting structured terms representing phenotypic abnormalities, comorbidities, treatments, and laboratory tests and creating prompts programmatically. Results: Performance of all of these approaches was modest, with the correct diagnosis ranked first in only 5.3-17.6% of cases. The performance of the prompts created from structured data was substantially worse than that of the original narrative texts, even if additional information was added following manual review of term extraction. Moreover, different versions of GPT-4 demonstrated substantially different performance on this task. Discussion: The sensitivity of the performance to the form of the prompt and the instability of results over two GPT-4 versions represent important current limitations to the use of GPT-4 to support diagnosis in real-life clinical settings. Conclusion: Research is needed to identify the best methods for creating prompts from typically available clinical data to support differential diagnostics.

12.
Transl Psychiatry ; 14(1): 246, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851761

RESUMO

Acute COVID-19 infection can be followed by diverse clinical manifestations referred to as Post Acute Sequelae of SARS-CoV2 Infection (PASC). Studies have shown an increased risk of being diagnosed with new-onset psychiatric disease following a diagnosis of acute COVID-19. However, it was unclear whether non-psychiatric PASC-associated manifestations (PASC-AMs) are associated with an increased risk of new-onset psychiatric disease following COVID-19. A retrospective electronic health record (EHR) cohort study of 2,391,006 individuals with acute COVID-19 was performed to evaluate whether non-psychiatric PASC-AMs are associated with new-onset psychiatric disease. Data were obtained from the National COVID Cohort Collaborative (N3C), which has EHR data from 76 clinical organizations. EHR codes were mapped to 151 non-psychiatric PASC-AMs recorded 28-120 days following SARS-CoV-2 diagnosis and before diagnosis of new-onset psychiatric disease. Association of newly diagnosed psychiatric disease with age, sex, race, pre-existing comorbidities, and PASC-AMs in seven categories was assessed by logistic regression. There were significant associations between a diagnosis of any psychiatric disease and five categories of PASC-AMs with odds ratios highest for neurological, cardiovascular, and constitutional PASC-AMs with odds ratios of 1.31, 1.29, and 1.23 respectively. Secondary analysis revealed that the proportions of 50 individual clinical features significantly differed between patients diagnosed with different psychiatric diseases. Our study provides evidence for association between non-psychiatric PASC-AMs and the incidence of newly diagnosed psychiatric disease. Significant associations were found for features related to multiple organ systems. This information could prove useful in understanding risk stratification for new-onset psychiatric disease following COVID-19. Prospective studies are needed to corroborate these findings.


Assuntos
COVID-19 , Transtornos Mentais , SARS-CoV-2 , Humanos , COVID-19/psicologia , COVID-19/complicações , COVID-19/epidemiologia , Masculino , Feminino , Transtornos Mentais/epidemiologia , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Idoso , Fenótipo , Síndrome de COVID-19 Pós-Aguda , Comorbidade , Registros Eletrônicos de Saúde , Adulto Jovem , Fatores de Risco , Adolescente
13.
medRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854034

RESUMO

The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present phenopacket-store. Version 0.1.12 of phenopacket-store includes 4916 phenopackets representing 277 Mendelian and chromosomal diseases associated with 236 genes, and 2872 unique pathogenic alleles curated from 605 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.

14.
Nucleic Acids Res ; 39(Database issue): D658-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21071397

RESUMO

The Hymenoptera Genome Database (HGD) is a comprehensive model organism database that caters to the needs of scientists working on insect species of the order Hymenoptera. This system implements open-source software and relational databases providing access to curated data contributed by an extensive, active research community. HGD contains data from 9 different species across ∼200 million years in the phylogeny of Hymenoptera, allowing researchers to leverage genetic, genome sequence and gene expression data, as well as the biological knowledge of related model organisms. The availability of resources across an order greatly facilitates comparative genomics and enhances our understanding of the biology of agriculturally important Hymenoptera species through genomics. Curated data at HGD includes predicted and annotated gene sets supported with evidence tracks such as ESTs/cDNAs, small RNA sequences and GC composition domains. Data at HGD can be queried using genome browsers and/or BLAST/PSI-BLAST servers, and it may also be downloaded to perform local searches. We encourage the public to access and contribute data to HGD at: http://HymenopteraGenome.org.


Assuntos
Bases de Dados Genéticas , Genoma de Inseto , Himenópteros/genética , Animais , Genômica , Anotação de Sequência Molecular , Software , Integração de Sistemas
15.
Nucleic Acids Res ; 39(Database issue): D830-4, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21123190

RESUMO

The Bovine Genome Database (BGD; http://BovineGenome.org) strives to improve annotation of the bovine genome and to integrate the genome sequence with other genomics data. BGD includes GBrowse genome browsers, the Apollo Annotation Editor, a quantitative trait loci (QTL) viewer, BLAST databases and gene pages. Genome browsers, available for both scaffold and chromosome coordinate systems, display the bovine Official Gene Set (OGS), RefSeq and Ensembl gene models, non-coding RNA, repeats, pseudogenes, single-nucleotide polymorphism, markers, QTL and alignments to complementary DNAs, ESTs and protein homologs. The Bovine QTL viewer is connected to the BGD Chromosome GBrowse, allowing for the identification of candidate genes underlying QTL. The Apollo Annotation Editor connects directly to the BGD Chado database to provide researchers with remote access to gene evidence in a graphical interface that allows editing and creating new gene models. Researchers may upload their annotations to the BGD server for review and integration into the subsequent release of the OGS. Gene pages display information for individual OGS gene models, including gene structure, transcript variants, functional descriptions, gene symbols, Gene Ontology terms, annotator comments and links to National Center for Biotechnology Information and Ensembl. Each gene page is linked to a wiki page to allow input from the research community.


Assuntos
Bovinos/genética , Bases de Dados Genéticas , Genômica , Anotação de Sequência Molecular , Animais , Genoma , Modelos Genéticos , Locos de Características Quantitativas , Alinhamento de Sequência , Software , Integração de Sistemas
16.
Proc Natl Acad Sci U S A ; 107(27): 12168-73, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566863

RESUMO

As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.


Assuntos
Genoma Bacteriano/genética , Genoma de Inseto/genética , Pediculus/genética , Pediculus/microbiologia , Animais , Enterobacteriaceae/genética , Genes Bacterianos/genética , Genes de Insetos/genética , Genômica/métodos , Humanos , Infestações por Piolhos/parasitologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Simbiose
17.
EBioMedicine ; 96: 104777, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672869

RESUMO

BACKGROUND: The cause and symptoms of long COVID are poorly understood. It is challenging to predict whether a given COVID-19 patient will develop long COVID in the future. METHODS: We used electronic health record (EHR) data from the National COVID Cohort Collaborative to predict the incidence of long COVID. We trained two machine learning (ML) models - logistic regression (LR) and random forest (RF). Features used to train predictors included symptoms and drugs ordered during acute infection, measures of COVID-19 treatment, pre-COVID comorbidities, and demographic information. We assigned the 'long COVID' label to patients diagnosed with the U09.9 ICD10-CM code. The cohorts included patients with (a) EHRs reported from data partners using U09.9 ICD10-CM code and (b) at least one EHR in each feature category. We analysed three cohorts: all patients (n = 2,190,579; diagnosed with long COVID = 17,036), inpatients (149,319; 3,295), and outpatients (2,041,260; 13,741). FINDINGS: LR and RF models yielded median AUROC of 0.76 and 0.75, respectively. Ablation study revealed that drugs had the highest influence on the prediction task. The SHAP method identified age, gender, cough, fatigue, albuterol, obesity, diabetes, and chronic lung disease as explanatory features. Models trained on data from one N3C partner and tested on data from the other partners had average AUROC of 0.75. INTERPRETATION: ML-based classification using EHR information from the acute infection period is effective in predicting long COVID. SHAP methods identified important features for prediction. Cross-site analysis demonstrated the generalizability of the proposed methodology. FUNDING: NCATS U24 TR002306, NCATS UL1 TR003015, Axle Informatics Subcontract: NCATS-P00438-B, NIH/NIDDK/OD, PSR2015-1720GVALE_01, G43C22001320007, and Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy Contract No. DE-AC02-05CH11231.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Tratamento Farmacológico da COVID-19 , Aprendizado de Máquina , Obesidade
18.
EBioMedicine ; 87: 104413, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36563487

RESUMO

BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: NIH (TR002306/OT2HL161847-01/OD011883/HG010860), U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at Jackson Laboratory, Marsico Family at CU Anschutz.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Progressão da Doença , SARS-CoV-2
19.
medRxiv ; 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35665012

RESUMO

Accurate stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, the natural history of long COVID is incompletely understood and characterized by an extremely wide range of manifestations that are difficult to analyze computationally. In addition, the generalizability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. We present a method for computationally modeling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning procedures. Using k-means clustering of this similarity matrix, we found six distinct clusters of PASC patients, each with distinct profiles of phenotypic abnormalities. There was a significant association of cluster membership with a range of pre-existing conditions and with measures of severity during acute COVID-19. Two of the clusters were associated with severe manifestations and displayed increased mortality. We assigned new patients from other healthcare centers to one of the six clusters on the basis of maximum semantic similarity to the original patients. We show that the identified clusters were generalizable across different hospital systems and that the increased mortality rate was consistently observed in two of the clusters. Semantic phenotypic clustering can provide a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC.

20.
medRxiv ; 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33791733

RESUMO

Since late 2019, the novel coronavirus SARS-CoV-2 has introduced a wide array of health challenges globally. In addition to a complex acute presentation that can affect multiple organ systems, increasing evidence points to long-term sequelae being common and impactful. The worldwide scientific community is forging ahead to characterize a wide range of outcomes associated with SARS-CoV-2 infection; however the underlying assumptions in these studies have varied so widely that the resulting data are difficult to compareFormal definitions are needed in order to design robust and consistent studies of Long COVID that consistently capture variation in long-term outcomes. Even the condition itself goes by three terms, most widely "Long COVID", but also "COVID-19 syndrome (PACS)" or, "post-acute sequelae of SARS-CoV-2 infection (PASC)". In the present study, we investigate the definitions used in the literature published to date and compare them against data available from electronic health records and patient-reported information collected via surveys. Long COVID holds the potential to produce a second public health crisis on the heels of the pandemic itself. Proactive efforts to identify the characteristics of this heterogeneous condition are imperative for a rigorous scientific effort to investigate and mitigate this threat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA