Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(22): 10633-10641, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37916770

RESUMO

Fluorescence microscopy enables specific visualization of proteins in living cells and has played an important role in our understanding of the protein subcellular location and function. Some proteins, however, show altered localization or function when labeled using direct fusions to fluorescent proteins, making them difficult to study in live cells. Additionally, the resolution of fluorescence microscopy is limited to ∼200 nm, which is 2 orders of magnitude larger than the size of most proteins. To circumvent these challenges, we previously developed LIVE-PAINT, a live-cell super-resolution approach that takes advantage of short interacting peptides to transiently bind a fluorescent protein to the protein-of-interest. Here, we successfully use LIVE-PAINT to image yeast membrane proteins that do not tolerate the direct fusion of a fluorescent protein by using peptide tags as short as 5-residues. We also demonstrate that it is possible to resolve multiple proteins at the nanoscale concurrently using orthogonal peptide interaction pairs.


Assuntos
Peptídeos , Proteínas , Diagnóstico por Imagem , Saccharomyces cerevisiae , Corantes Fluorescentes/química
2.
J Struct Biol ; 215(3): 107981, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37245604

RESUMO

Biomaterials for tissue regeneration must mimic the biophysical properties of the native physiological environment. A protein engineering approach allows the generation of protein hydrogels with specific and customised biophysical properties designed to suit a particular physiological environment. Herein, repetitive engineered proteins were successfully designed to form covalent molecular networks with defined physical characteristics able to sustain cell phenotype. Our hydrogel design was made possible by the incorporation of the SpyTag (ST) peptide and multiple repetitive units of the SpyCatcher (SC) protein that spontaneously formed covalent crosslinks upon mixing. Changing the ratios of the protein building blocks (ST:SC), allowed the viscoelastic properties and gelation speeds of the hydrogels to be altered and controlled. The physical properties of the hydrogels could readily be altered further to suit different environments by tuning the key features in the repetitive protein sequence. The resulting hydrogels were designed with a view to allow cell attachment and encapsulation of liver derived cells. Biocompatibility of the hydrogels was assayed using a HepG2 cell line constitutively expressing GFP. The cells remained viable and continued to express GFP whilst attached or encapsulated within the hydrogel. Our results demonstrate how this genetically encoded approach using repetitive proteins could be applied to bridge engineering biology with nanotechnology creating a level of biomaterial customisation previously inaccessible.


Assuntos
Hidrogéis , Análise Serial de Proteínas , Proteínas/genética , Materiais Biocompatíveis/química , Sequência de Aminoácidos
3.
Eur Phys J E Soft Matter ; 46(6): 42, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294385

RESUMO

We present and analyze video-microscopy-based single-particle-tracking measurements of the budding yeast (Saccharomyces cerevisiae) membrane protein, Pma1, fluorescently labeled either by direct fusion to the switchable fluorescent protein, mEos3.2, or by a novel, light-touch, labeling scheme, in which a 5 amino acid tag is directly fused to the C-terminus of Pma1, which then binds mEos3.2. The track diffusivity distributions of these two populations of single-particle tracks differ significantly, demonstrating that labeling method can be an important determinant of diffusive behavior. We also applied perturbation expectation maximization (pEMv2) (Koo and Mochrie in Phys Rev E 94(5):052412, 2016), which sorts trajectories into the statistically optimum number of diffusive states. For both TRAP-labeled Pma1 and Pma1-mEos3.2, pEMv2 sorts the tracks into two diffusive states: an essentially immobile state and a more mobile state. However, the mobile fraction of Pma1-mEos3.2 tracks is much smaller ([Formula: see text]) than the mobile fraction of TRAP-labeled Pma1 tracks ([Formula: see text]). In addition, the diffusivity of Pma1-mEos3.2's mobile state is several times smaller than the diffusivity of TRAP-labeled Pma1's mobile state. Thus, the two different labeling methods give rise to very different overall diffusive behaviors. To critically assess pEMv2's performance, we compare the diffusivity and covariance distributions of the experimental pEMv2-sorted populations to corresponding theoretical distributions, assuming that Pma1 displacements realize a Gaussian random process. The experiment-theory comparisons for both the TRAP-labeled Pma1 and Pma1-mEos3.2 reveal good agreement, bolstering the pEMv2 approach.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Proteins ; 88(9): 1154-1161, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32105366

RESUMO

There have been several studies suggesting that protein structures solved by NMR spectroscopy and X-ray crystallography show significant differences. To understand the origin of these differences, we assembled a database of high-quality protein structures solved by both methods. We also find significant differences between NMR and crystal structures-in the root-mean-square deviations of the C α atomic positions, identities of core amino acids, backbone, and side-chain dihedral angles, and packing fraction of core residues. In contrast to prior studies, we identify the physical basis for these differences by modeling protein cores as jammed packings of amino acid-shaped particles. We find that we can tune the jammed packing fraction by varying the degree of thermalization used to generate the packings. For an athermal protocol, we find that the average jammed packing fraction is identical to that observed in the cores of protein structures solved by X-ray crystallography. In contrast, highly thermalized packing-generation protocols yield jammed packing fractions that are even higher than those observed in NMR structures. These results indicate that thermalized systems can pack more densely than athermal systems, which suggests a physical basis for the structural differences between protein structures solved by NMR and X-ray crystallography.


Assuntos
Aminoácidos/química , Cristalografia por Raios X/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Sequência de Aminoácidos , Cristalização , Conjuntos de Dados como Assunto , Conformação Proteica , Proteínas/ultraestrutura , Soluções
5.
Langmuir ; 33(47): 13590-13597, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29094950

RESUMO

Protein adsorption and assembly at interfaces provide a potentially versatile route to create useful constructs for fluid compartmentalization. In this context, we consider the interfacial assembly of a bacterial biofilm protein, BslA, at air-water and oil-water interfaces. Densely packed, high modulus monolayers form at air-water interfaces, leading to the formation of flattened sessile water drops. BslA forms elastic sheets at oil-water interfaces, leading to the production of stable monodisperse oil-in-water microcapsules. By contrast, water-in-oil microcapsules are unstable but display arrested rather than full coalescence on contact. The disparity in stability likely originates from a low areal density of BslA hydrophobic caps on the exterior surface of water-in-oil microcapsules, relative to the inverse case. In direct analogy with small molecule surfactants, the lack of stability of individual water-in-oil microcapsules is consistent with the large value of the hydrophilic-lipophilic balance (HLB number) calculated based on the BslA crystal structure. The occurrence of arrested coalescence indicates that the surface activity of BslA is similar to that of colloidal particles that produce Pickering emulsions, with the stability of partially coalesced structures ensured by interfacial jamming. Micropipette aspiration and flow in tapered capillaries experiments reveal intriguing reversible and nonreversible modes of mechanical deformation, respectively. The mechanical robustness of the microcapsules and the ability to engineer their shape and to design highly specific binding responses through protein engineering suggest that these microcapsules may be useful for biomedical applications.


Assuntos
Biofilmes , Proteínas de Bactérias , Cápsulas , Emulsões , Interações Hidrofóbicas e Hidrofílicas
6.
Proteins ; 84(7): 900-11, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26917446

RESUMO

Methionine (Met) is a structurally versatile amino acid most commonly found in protein cores and at protein-protein interfaces. Thus, a complete description of the structure of Met is important for a fundamental understanding of protein structure and design. In previous work, we showed that the hard-sphere dipeptide model is able to recapitulate the side-chain dihedral angle distributions observed in high-resolution protein crystal structures for the nine amino acids we have studied to date: Val, Thr, Ser, Leu, Ile, Cys, Tyr, Trp, and Phe. Using the same approach, we are also able to predict the observed χ1 and χ2 side-chain dihedral angle distributions for Met. However, the form of the side-chain dihedral angle distribution P(χ3 ) predicted by the hard-sphere model does not match the observed distribution. We investigate the possible origins of the discrepancy and find that specific bond lengths and angles in Met side chains strongly influence P(χ3 ). We then identify minimal additions to the hard-sphere dipeptide model necessary to quantitatively predict P(χ3 ) of Met, and its near isosteres norleucine (Nle) and selenomethionine (Mse). We find that adding weak attractive interactions between hydrogen atoms to the model is sufficient to achieve predictions for P(χ3 ) that closely match the observed P(χ3 ) distributions for Met, Nle, and Mse. We explicitly show that weak attractive interactions between hydrogens do not negatively affect the agreement between the predicted and observed side-chain dihedral angle distribution for Val, Leu, Ile, and Phe, as we expect for other amino acids. Proteins 2016; 84:900-911. © 2016 Wiley Periodicals, Inc.


Assuntos
Dipeptídeos/química , Metionina/química , Proteínas/química , Elétrons , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica
7.
Chembiochem ; 17(17): 1652-7, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27304706

RESUMO

Fluorescence imaging is a powerful tool to study protein function in living cells. Here, we introduce a novel imaging strategy that is fully genetically encodable, does not require the use of exogenous substrates, and adds a minimally disruptive tag to the protein of interest (POI). Our method was based on a set of designed tetratricopeptide repeat affinity proteins (TRAPs) that specifically and reversibly interact with a short, extended peptide tag. We co-expressed the TRAPs fused to fluorescent proteins (FPs) and the peptide tags fused to the POIs. We illustrated the method using the Escherichia coli protein FtsZ and showed that our system could track distinct FtsZ structures under both low and high expression conditions in live cells. We anticipate that our imaging strategy will be a useful tool for imaging the subcellular localization of many proteins, especially those recalcitrant to imaging by direct tagging with FPs.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Peptídeos/metabolismo , Proteínas Luminescentes/genética , Viabilidade Microbiana , Peptídeos/química , Peptídeos/genética
8.
Expert Rev Proteomics ; 13(5): 481-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27031866

RESUMO

All diseases can be fundamentally viewed as the result of malfunctioning cellular pathways. Protein engineering offers the potential to develop new tools that will allow these dysfunctional pathways to be better understood, in addition to potentially providing new routes to restore proper function. Here we discuss different approaches that can be used to change the intracellular activity of a protein by intervening at the protein level: targeted protein sequestration, protein recruitment, protein degradation, and selective inhibition of binding interfaces. The potential of each of these tools to be developed into effective therapeutic treatments will also be discussed, along with any major barriers that currently block their translation into the clinic.


Assuntos
Redes e Vias Metabólicas , Engenharia de Proteínas/métodos , Humanos , Terapia de Alvo Molecular , Proteínas/efeitos dos fármacos , Proteínas/metabolismo
9.
Adv Exp Med Biol ; 940: 167-177, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27677513

RESUMO

The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types.


Assuntos
Hidrogéis/química , Proteínas/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
10.
Proteins ; 83(8): 1488-99, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018846

RESUMO

Despite recent improvements in computational methods for protein design, we still lack a quantitative, predictive understanding of the intrinsic probabilities for amino acids to adopt particular side-chain conformations. Surprisingly, this question has remained unsettled for many years, in part because of inconsistent results from different experimental approaches. To explicitly determine the relative populations of different side-chain dihedral angles, we performed all-atom hard-sphere Langevin Dynamics simulations of leucine (Leu) and isoleucine (Ile) dipeptide mimetics with stereo-chemical constraints and repulsive-only steric interactions between non-bonded atoms. We determine the relative populations of the different χ(1) and χ(2) dihedral angle combinations as a function of the backbone dihedral angles ϕ and ψ. We also propose, and test, a mechanism for inter-conversion between the different side-chain conformations. Specifically, we discover that some of the transitions between side-chain dihedral angle combinations are very frequent, whereas others are orders of magnitude less frequent, because they require rare coordinated motions to avoid steric clashes. For example, to transition between different values of χ(2), the Leu side-chain bond angles κ(1) and κ(2) must increase, whereas to transition in χ(1), the Ile bond angles λ(1) and λ(2) must increase. These results emphasize the importance of computational approaches in stimulating further experimental studies of the conformations of side-chains in proteins. Moreover, our studies emphasize the power of simple steric models to inform our understanding of protein structure, dynamics, and design.


Assuntos
Isoleucina/química , Leucina/química , Conformação Proteica , Proteínas/química , Biologia Computacional , Interações Hidrofóbicas e Hidrofílicas , Isoleucina/metabolismo , Leucina/metabolismo , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Proteínas/metabolismo
11.
J Am Chem Soc ; 137(32): 10367-73, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26207891

RESUMO

In contrast to globular proteins, the structure of repeat proteins is dominated by a regular set of short-range interactions. This property may confer on the native state of such proteins significant elasticity. We probe the molecular origin of the spring-like behavior of repeat proteins using a designed tetratricopeptide repeat protein with three repeat units (CTPR3). Single-molecule fluorescence studies of variants of the protein with FRET pairs at different positions show a continuous expansion of the folded state of CTPR3 at low concentrations of a chemical denaturant, preceding the all-or-none transition to the unfolded state. This remarkable native-state expansion can be explained quantitatively by a reduction in the spring constant of the structure. Circular dichroism and tryptophan fluorescence spectroscopy further show that the expansion does not involve either unwinding of CTPR3 helices or unraveling of interactions within repeats. These findings point to hydrophobic inter-repeat contacts as the source of the elasticity of repeat proteins.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas/química , Dicroísmo Circular , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas/metabolismo , Espectrometria de Fluorescência , Triptofano/química
12.
Biochem Soc Trans ; 43(5): 874-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517897

RESUMO

Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class: tetratricopeptide repeat (TPR) proteins. In previous work, we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena (2011) Prot. Sci. 20: , 1042-1047; Main (2003) Structure 11: , 497-508]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena (2009) ACS Chem. Biol. 5: , 545-552; Cortajarena (2008) ACS Chem. Biol. 3: , 161-166; Jackrel (2009) Prot. Sci. 18: , 762-774; Kajander (2007) Acta Crystallogr. D Biol. Crystallogr. 63: , 800-811]. Here we focus on the development of one such TPR-peptide interaction for a practical application, affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications.


Assuntos
Indicadores e Reagentes/química , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Sequências Repetitivas de Aminoácidos , Animais , Linhagem Celular , Cromatografia de Afinidade , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/metabolismo , Indicadores e Reagentes/metabolismo , Ligantes , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
13.
Biopolymers ; 104(4): 334-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25784145

RESUMO

Building on the pioneering work of Ho and DeGrado (J Am Chem Soc 1987, 109, 6751-6758) in the late 1980s, protein design approaches have revealed many fundamental features of protein structure and stability. We are now in the era that the early work presaged - the design of new proteins with practical applications and uses. Here we briefly survey some past milestones in protein design, in addition to highlighting recent progress and future aspirations.


Assuntos
Engenharia de Proteínas/métodos , Animais , Humanos , Engenharia de Proteínas/tendências
14.
Biophys J ; 107(2): 384-392, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25028880

RESUMO

The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control.


Assuntos
DNA/química , Histonas/química , Nucleossomos/química , Conformação de Ácido Nucleico , Pinças Ópticas , Conformação Proteica
15.
Proteins ; 82(10): 2574-84, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24912976

RESUMO

The side-chain dihedral angle distributions of all amino acids have been measured from myriad high-resolution protein crystal structures. However, we do not yet know the dominant interactions that determine these distributions. Here, we explore to what extent the defining features of the side-chain dihedral angle distributions of different amino acids can be captured by a simple physical model. We find that a hard-sphere model for a dipeptide mimetic that includes only steric interactions plus stereochemical constraints is able to recapitulate the key features of the back-bone dependent observed amino acid side-chain dihedral angle distributions of Ser, Cys, Thr, Val, Ile, Leu, Phe, Tyr, and Trp. We find that for certain amino acids, performing the calculations with the amino acid of interest in the central position of a short α-helical segment improves the match between the predicted and observed distributions. We also identify the atomic interactions that give rise to the differences between the predicted distributions for the hard-sphere model of the dipeptide and that of the α-helical segment. Finally, we point out a case where the hard-sphere plus stereochemical constraint model is insufficient to recapitulate the observed side-chain dihedral angle distribution, namely the distribution P(χ3) for Met.


Assuntos
Aminoácidos/química , Dipeptídeos/química , Modelos Moleculares , Algoritmos , Sequência de Aminoácidos , Aminoácidos Aromáticos/química , Animais , Bases de Dados de Proteínas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Oligopeptídeos/química , Conformação Proteica , Engenharia de Proteínas/métodos , Proteínas/química , Estereoisomerismo
16.
Protein Sci ; 33(9): e5148, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39180484

RESUMO

In protein design, the ultimate test of success is that the designs function as desired. Here, we discuss the utility of cell free protein synthesis (CFPS) as a rapid, convenient and versatile method to screen for activity. We champion the use of CFPS in screening potential designs. Compared to in vivo protein screening, a wider range of different activities can be evaluated using CFPS, and the scale on which it can easily be used-screening tens to hundreds of designed proteins-is ideally suited to current needs. Protein design using physics-based strategies tended to have a relatively low success rate, compared with current machine-learning based methods. Screening steps (such as yeast display) were often used to identify proteins that displayed the desired activity from many designs that were highly ranked computationally. We also describe how CFPS is well-suited to identify the reasons designs fail, which may include problems with transcription, translation, and solubility, in addition to not achieving the desired structure and function.


Assuntos
Sistema Livre de Células , Biossíntese de Proteínas , Proteínas , Proteínas/química , Proteínas/metabolismo , Sistema Livre de Células/metabolismo , Engenharia de Proteínas/métodos
17.
Biophys J ; 105(10): 2403-11, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24268152

RESUMO

To successfully design new proteins and understand the effects of mutations in natural proteins, we must understand the geometric and physicochemical principles underlying protein structure. The side chains of amino acids in peptides and proteins adopt specific dihedral angle combinations; however, we still do not have a fundamental quantitative understanding of why some side-chain dihedral angle combinations are highly populated and others are not. Here we employ a hard-sphere plus stereochemical constraint model of dipeptide mimetics to enumerate the side-chain dihedral angles of leucine (Leu) and isoleucine (Ile), and identify those conformations that are sterically allowed versus those that are not as a function of the backbone dihedral angles ϕ and ψ. We compare our results with the observed distributions of side-chain dihedral angles in proteins of known structure. With the hard-sphere plus stereochemical constraint model, we obtain agreement between the model predictions and the observed side-chain dihedral angle distributions for Leu and Ile. These results quantify the extent to which local, geometrical constraints determine protein side-chain conformations.


Assuntos
Dipeptídeos/química , Isoleucina/química , Leucina/química , Modelos Moleculares , Proteínas/química , Conformação Molecular , Peptidomiméticos/química , Probabilidade , Estereoisomerismo , Termodinâmica
18.
Biochem Soc Trans ; 41(5): 1131-1136, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24059497

RESUMO

Protein engineering is at an exciting stage because designed protein-protein interactions are being used in many applications. For instance, three designed proteins are now in clinical trials. Although there have been many successes over the last decade, protein engineering still faces numerous challenges. Often, designs do not work as anticipated and they still require substantial redesign. The present review focuses on the successes, the challenges and the limitations of rational protein design today.


Assuntos
Engenharia de Proteínas , Proteínas/uso terapêutico , Sequências Repetitivas de Aminoácidos/genética , Ensaios Clínicos como Assunto , Biologia Computacional , Humanos , Mapas de Interação de Proteínas/genética , Proteínas/química
19.
Gels ; 9(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367151

RESUMO

Protein engineering allows for the programming of specific building blocks to form functional and novel materials with customisable physical properties suitable for tailored engineering applications. We have successfully designed and programmed engineered proteins to form covalent molecular networks with defined physical characteristics. Our hydrogel design incorporates the SpyTag (ST) peptide and SpyCatcher (SC) protein that spontaneously form covalent crosslinks upon mixing. This genetically encodable chemistry allowed us to easily incorporate two stiff and rod-like recombinant proteins in the hydrogels and modulate the resulting viscoelastic properties. We demonstrated how differences in the composition of the microscopic building blocks change the macroscopic viscoelastic properties of the hydrogels. We specifically investigated how the identity of the protein pairs, the molar ratio of ST:SC, and the concentration of the proteins influence the viscoelastic response of the hydrogels. By showing tuneable changes in protein hydrogel rheology, we increased the capabilities of synthetic biology to create novel materials, allowing engineering biology to interface with soft matter, tissue engineering, and material science.

20.
Protein Sci ; 32(2): e4558, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585831

RESUMO

We present direct-LIVE-PAINT, an easy-to-implement approach for the nanoscopic imaging of protein structures in live cells using labeled binding peptides. We demonstrate the feasibility of direct-LIVE-PAINT with an actin-binding peptide fused to EGFP, the location of which can be accurately determined as it transiently binds to actin filaments. We show that direct-LIVE-PAINT can be used to image actin structures below the diffraction-limit of light and have used it to observe the dynamic nature of actin in live cells. We envisage a similar approach could be applied to imaging other proteins within live mammalian cells.


Assuntos
Citoesqueleto de Actina , Actinas , Animais , Actinas/metabolismo , Ligação Proteica , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA