Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Chem Biol ; 19(9): 1054-1062, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169961

RESUMO

Preventing the biogenesis of disease-relevant proteins is an attractive therapeutic strategy, but attempts to target essential protein biogenesis factors have been hampered by excessive toxicity. Here we describe KZR-8445, a cyclic depsipeptide that targets the Sec61 translocon and selectively disrupts secretory and membrane protein biogenesis in a signal peptide-dependent manner. KZR-8445 potently inhibits the secretion of pro-inflammatory cytokines in primary immune cells and is highly efficacious in a mouse model of rheumatoid arthritis. A cryogenic electron microscopy structure reveals that KZR-8445 occupies the fully opened Se61 lateral gate and blocks access to the lumenal plug domain. KZR-8445 binding stabilizes the lateral gate helices in a manner that traps select signal peptides in the Sec61 channel and prevents their movement into the lipid bilayer. Our results establish a framework for the structure-guided discovery of novel therapeutics that selectively modulate Sec61-mediated protein biogenesis.


Assuntos
Proteínas de Membrana , Sinais Direcionadores de Proteínas , Animais , Camundongos , Transporte Proteico , Proteínas de Membrana/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Biossíntese de Proteínas
2.
EMBO Rep ; 24(12): e57910, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983950

RESUMO

Protein translocation across the endoplasmic reticulum (ER) membrane is an essential step during protein entry into the secretory pathway. The conserved Sec61 protein-conducting channel facilitates polypeptide translocation and coordinates cotranslational polypeptide-processing events. In cells, the majority of Sec61 is stably associated with a heterotetrameric membrane protein complex, the translocon-associated protein complex (TRAP), yet the mechanism by which TRAP assists in polypeptide translocation remains unknown. Here, we present the structure of the core Sec61/TRAP complex bound to a mammalian ribosome by cryogenic electron microscopy (cryo-EM). Ribosome interactions anchor the Sec61/TRAP complex in a conformation that renders the ER membrane locally thinner by significantly curving its lumenal leaflet. We propose that TRAP stabilizes the ribosome exit tunnel to assist nascent polypeptide insertion through Sec61 and provides a ratcheting mechanism into the ER lumen mediated by direct polypeptide interactions.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Animais , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Peptídeos/metabolismo , Transporte Proteico
3.
Biochim Biophys Acta Biomembr ; 1859(5): 1059-1065, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28254415

RESUMO

The human equilibrative nucleoside transporter-1 (hENT1) is important for the entry of anti-cancer and anti-viral nucleoside analog therapeutics into the cell, and thus for their efficacy. Understanding of hENT1 structure-function relationship could assist with development of nucleoside analogs with better cellular uptake properties. However, structural and biophysical studies of hENT1 remain challenging as the hydrophobic nature of the protein leads to complete aggregation upon detergent-based membrane isolation. Here we report detergent-free reconstitution of the hENT1 transporter into styrene maleic acid co-polymer lipid particles (SMALPs) that form a native lipid disc. SMALP-purified hENT1, expressed in Sf9 insect cells binds a variety of ligands with a similar affinity as the protein in native membrane, and exhibits increased thermal stability compared to detergent-solubilized hENT1. hENT1-SMALPs purified using FLAG affinity M2 resin yielded ~0.4mg of active and homogenous protein per liter of culture as demonstrated by ligand binding, size-exclusion chromatography and SDS-PAGE analyses. Electrospray ionization mass spectrometry (ESI-MS) analysis showed that each hENT1 lipid disc contains 16 phosphatidylcholine (PC) and 2 phosphatidylethanolamine (PE) lipid molecules. Polyunsaturated lipids are specifically excluded from the hENT1 lipid discs, possibly reflecting a functional requirement for a dynamic lipid environment. Our work demonstrates that human nucleoside transporters can be extracted and purified without removal from their native lipid environment, opening up a wide range of possibilities for their biophysical and structural studies.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/química , Maleatos/química , Poliestirenos/química , Animais , Transportador Equilibrativo 1 de Nucleosídeo/fisiologia , Humanos , Lipídeos de Membrana/química , Estabilidade Proteica , Células Sf9 , Solubilidade
4.
Protein Expr Purif ; 114: 99-107, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26162242

RESUMO

Human equilibrative nucleoside transporter-1 (hENT1) is the major plasma membrane transporter involved in transportation of natural nucleosides as well as nucleoside analog drugs, used in anti-cancer and anti-viral therapies. Despite extensive biochemical and pharmacological studies, little is known about the structure-function relationship of this protein. The major obstacles to purification include a low endogenous expression level, the lack of an efficient expression and purification protocol, and the hydrophobic nature of the protein. Here, we report protein expression, purification and functional characterization of hENT1 from Sf9 insect cells. hENT1 expressed by Sf9 cells is functionally active as demonstrated by saturation binding with a Kd of 1.2±0.2nM and Bmax of 110±5pmol/mg for [(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR). We also demonstrate purification of hENT1 using FLAG antibody affinity resin in lauryl maltose neopentyl glycol detergent with a Kd of 4.3±0.7nM. The yield of hENT1 from Sf9 cells was ∼0.5mg active transporter per liter of culture. The purified protein is functionally active, stable, homogenous and appropriate for further biophysical and structural studies.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/isolamento & purificação , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Transportador Equilibrativo 1 de Nucleosídeo/química , Transportador Equilibrativo 1 de Nucleosídeo/genética , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9 , Suínos
5.
Acta Biomater ; 112: 250-261, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32522715

RESUMO

Glucoside detergents are successfully used for membrane protein crystallization mainly because of their ability to form small protein-detergent complexes. In a previous study, we introduced glucose neopentyl glycol (GNG) amphiphiles with a branched diglucoside structure that has facilitated high resolution crystallographic structure determination of several membrane proteins. Like other glucoside detergents, however, these GNGs were less successful than DDM in stabilizing membrane proteins, limiting their wide use in protein structural study. As a strategy to improve GNG efficacy for protein stabilization, we introduced two different alkyl chains (i.e., main and pendant chains) into the GNG scaffold while maintaining the branched diglucoside head group. Of these pendant-bearing GNGs (P-GNGs), three detergents (GNG-2,14, GNG-3,13 and GNG-3,14) were not only notably better than both DDM (a gold standard detergent) and the previously described GNGs at stabilizing all six membrane proteins tested here, but were also as efficient as DDM at membrane protein extraction. The results suggest that the C14 main chain of the P-GNGs is highly compatible with the hydrophobic widths of membrane proteins, while the C2/C3 pendant chain is effective at strengthening detergent hydrophobic interactions. Based on the marked effect on protein stability and solubility, these glucoside detergents hold significant potential for membrane protein structural study. Furthermore, the independent roles of the detergent two alkyl chains first introduced in this study have shed light on new amphiphile design for membrane protein study. STATEMENT OF SIGNIFICANCE: Detergent efficacy for protein stabilization tends to be protein-specific, thus it is challenging to find a detergent that is effective at stabilizing multiple membrane proteins. By incorporating a pendant chain into our previous GNG scaffold, we prepared pendant chain-bearing GNGs (P-GNGs) and identified three P-GNGs that were highly effective at stabilizing all membrane proteins tested here including two GPCRs. In addition, the new detergents were as efficient as DDM at extracting membrane proteins, enabling use of these detergents over the multiple steps of protein isolation. The key difference between the P-GNGs and other glucoside detergents, the presence of a pendant chain, is likely to be responsible for their markedly enhanced protein stabilization behavior.


Assuntos
Detergentes , Proteínas de Membrana , Detergentes/farmacologia , Glucose , Glicóis , Estabilidade Proteica
6.
SLAS Discov ; 24(10): 953-968, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31503511

RESUMO

Physiological nucleosides are used for the synthesis of DNA, RNA, and ATP in the cell and serve as universal mammalian signaling molecules that regulate physiological processes such as vasodilation and platelet aggregation by engaging with cell surface receptors. The same pathways that allow uptake of physiological nucleosides mediate the cellular import of synthetic nucleoside analogs used against cancer, HIV, and other viral diseases. Physiological nucleosides and nucleoside drugs are imported by two families of nucleoside transporters: the SLC28 concentrative nucleoside transporters (CNTs) and SLC29 equilibrative nucleoside transporters (ENTs). The four human ENT paralogs are expressed in distinct tissues, localize to different subcellular sites, and transport a variety of different molecules. Here we provide an overview of the known structure-function relationships of the ENT family with a focus on ligand binding and transport in the context of a new hENT1 homology model. We provide a generic residue numbering system for the different ENTs to facilitate the interpretation of mutational data produced using different ENT homologs. The discovery of paralog-selective small-molecule modulators is highly relevant for the design of new therapies and for uncovering the functions of poorly characterized ENT family members. Here, we discuss recent developments in the discovery of new paralog-selective small-molecule ENT inhibitors, including new natural product-inspired compounds. Recent progress in the ability to heterologously produce functional ENTs will allow us to gain insight into the structure and functions of different ENT family members as well as the rational discovery of highly selective inhibitors.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Proteínas de Transporte de Nucleosídeo Equilibrativas/química , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Proteínas de Transporte de Nucleosídeo Equilibrativas/antagonistas & inibidores , Proteínas de Transporte de Nucleosídeo Equilibrativas/genética , Humanos , Ligantes , Estrutura Molecular , Mutação , Ligação Proteica , Relação Estrutura-Atividade
7.
Nat Chem ; 11(3): 254-263, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30532015

RESUMO

Rapamycin and FK506 are macrocyclic natural products with an extraordinary mode of action, in which they form binary complexes with FK506-binding protein (FKBP) through a shared FKBP-binding domain before forming ternary complexes with their respective targets, mechanistic target of rapamycin (mTOR) and calcineurin, respectively. Inspired by this, we sought to build a rapamycin-like macromolecule library to target new cellular proteins by replacing the effector domain of rapamycin with a combinatorial library of oligopeptides. We developed a robust macrocyclization method using ring-closing metathesis and synthesized a 45,000-compound library of hybrid macrocycles (named rapafucins) using optimized FKBP-binding domains. Screening of the rapafucin library in human cells led to the discovery of rapadocin, an inhibitor of nucleoside uptake. Rapadocin is a potent, isoform-specific and FKBP-dependent inhibitor of the equilibrative nucleoside transporter 1 and is efficacious in an animal model of kidney ischaemia reperfusion injury. Together, these results demonstrate that rapafucins are a new class of chemical probes and drug leads that can expand the repertoire of protein targets well beyond mTOR and calcineurin.


Assuntos
Descoberta de Drogas/métodos , Macrolídeos/química , Macrolídeos/metabolismo , Substâncias Protetoras/química , Substâncias Protetoras/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Proteoma/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Sirolimo/química , Sirolimo/metabolismo , Suínos , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo , Tacrolimo/química , Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
8.
Biochem Pharmacol ; 98(4): 681-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26428002

RESUMO

Many nucleoside transport inhibitors are in clinical use as anti-cancer, vasodilator and cardioprotective drugs. However, little is known about the binding energetics of these inhibitors to nucleoside transporters (NTs) due to their low endogenous expression levels and difficulties in the biophysical characterization of purified protein with ligands. Here, we present kinetics and thermodynamic analyses of inhibitor binding to the human equilibrative nucleoside transporter-1 (hENT1), also known as SLC29A1. Using a radioligand binding assay, we obtained equilibrium binding and kinetic rate constants of well-known NT inhibitors--[(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR), dilazep, and dipyridamole--and the native permeant, adenosine, to hENT1. We observed that the equilibrium binding affinities for all inhibitors decreased whereas, the kinetic rate constants increased with increasing temperature. Furthermore, we found that binding is enthalpy driven and thus, an exothermic reaction, implying that the transporter does not discriminate between its inhibitors and substrates thermodynamically. This predominantly enthalpy-driven binding by four chemically distinct ligands suggests that the transporter may not tolerate diversity in the type of interactions that lead to high affinity binding. Consistent with this, the measured activation energy of [(3)H]NBMPR association was relatively large (20 kcal mol(-1)) suggesting a conformational change upon inhibitor binding. For all three inhibitors the enthalpy (ΔH°) and entropy (ΔS°) contributions to the reaction energetics were determined by van't Hoff analysis to be roughly similar (25-75% ΔG°). Gains in enthalpy with increasing polar surface area of inhibitors suggest that the binding is favored by electrostatic or polar interactions between the ligands and the transporter.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Termodinâmica , Animais , Dilazep/farmacocinética , Humanos , Insetos , Ligação Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA