Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurosci ; 40(6): 1176-1185, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024766

RESUMO

Human induced pluripotent stem cells (hiPSCs) have revolutionized research on human diseases, particularly neurodegenerative and psychiatric disorders, making it possible to study mechanisms of disease risk and initiation in otherwise inaccessible patient-specific cells. Today, the integration of CRISPR engineering approaches with hiPSC-based models permits precise isogenic comparisons of human neurons and glia. This review is intended as a guideline for neuroscientists and clinicians interested in translating their research to hiPSC-based studies. It offers state-of-the-art approaches to tackling the challenges that are unique to human in vitro disease models, particularly interdonor and intradonor variability, and limitations in neuronal maturity and circuit complexity. Finally, we provide a detailed overview of the immense possibilities the field has to offer, highlighting efficient neural differentiation and induction strategies for the major brain cell types and providing perspective into integrating CRISPR-based methods into study design. The combination of hiPSC-based disease modeling, CRISPR technology, and high-throughput approaches promises to advance our scientific knowledge and accelerate progress in drug discovery.Dual Perspectives Companion Paper: Studying Human Neurodevelopment and Diseases Using 3D Brain Organoids, by Ai Tian, Julien Muffat, and Yun Li.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Edição de Genes/tendências , Células-Tronco Pluripotentes Induzidas , Modelos Genéticos , Humanos
2.
Brain ; 140(6): 1561-1578, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459997

RESUMO

Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.


Assuntos
Deficiência Intelectual/genética , Espasticidade Muscular/genética , Atrofia Óptica/genética , RNA Polimerase III/genética , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Idoso , Técnicas de Cultura de Células , Éxons/genética , Feminino , Estudos de Associação Genética , Humanos , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/diagnóstico por imagem , Espasticidade Muscular/fisiopatologia , Mutação , Atrofia Óptica/diagnóstico por imagem , Atrofia Óptica/fisiopatologia , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/fisiopatologia , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/fisiopatologia
3.
Sci Rep ; 9(1): 9615, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270336

RESUMO

Axonal degeneration is a key pathology of neurodegenerative diseases, including hereditary spastic paraplegia (HSP), a disorder characterized by spasticity in the lower limbs. Treatments for HSP and other neurodegenerative diseases are mainly symptomatic. While iPSC-derived neurons are valuable for drug discovery and target identification, these applications require robust differentiation paradigms and rapid phenotypic read-outs ranging between hours and a few days. Using spastic paraplegia type 4 (SPG4, the most frequent HSP subtype) as an exemplar, we here present three rapid phenotypic assays for uncovering neuronal process pathologies in iPSC-derived glutamatergic cortical neurons. Specifically, these assays detected a 51% reduction in neurite outgrowth and a 60% increase in growth cone area already 24 hours after plating; axonal swellings, a hallmark of HSP pathology, was discernible after only 5 days. Remarkably, the identified phenotypes were neuron subtype-specific and not detectable in SPG4-derived GABAergic forebrain neurons. We transferred all three phenotypic assays to a 96-well setup, applied small molecules and found that a liver X receptor (LXR) agonist rescued all three phenotypes in HSP neurons, providing a potential drug target for HSP treatment. We expect this multiparametric and rapid phenotyping approach to accelerate development of therapeutic compounds for HSP and other neurodegenerative diseases.


Assuntos
Biomarcadores , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Diferenciação Celular , Células Cultivadas , Haploinsuficiência , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Crescimento Neuronal , Fenótipo , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/etiologia , Paraplegia Espástica Hereditária/metabolismo , Espastina/genética
4.
Cell Rep ; 27(7): 2212-2228.e7, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091457

RESUMO

iPSC-derived human neurons are expected to revolutionize studies on brain diseases, but their functional heterogeneity still poses a problem. Key sources of heterogeneity are the different cell culture systems used. We show that an optimized autaptic culture system, with single neurons on astrocyte feeder islands, is well suited to culture, and we analyze human iPSC-derived neurons in a standardized, systematic, and reproducible manner. Using classically differentiated and transcription factor-induced human glutamatergic and GABAergic neurons, we demonstrate that key features of neuronal morphology and function, including dendrite structure, synapse number, membrane properties, synaptic transmission, and short-term plasticity, can be assessed with substantial throughput and reproducibility. We propose our optimized autaptic culture system as a tool to study functional features of human neurons, particularly in the context of disease phenotypes and experimental therapy.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Neurônios GABAérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Dendritos/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Ratos Wistar , Reprodutibilidade dos Testes
5.
Cell Rep ; 27(7): 2199-2211.e6, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091456

RESUMO

Synaptic dysfunction is associated with many brain disorders, but robust human cell models to study synaptic transmission and plasticity are lacking. Instead, current in vitro studies on human neurons typically rely on spontaneous synaptic events as a proxy for synapse function. Here, we describe a standardized in vitro approach using human neurons cultured individually on glia microdot arrays that allow single-cell analysis of synapse formation and function. We show that single glutamatergic or GABAergic forebrain neurons differentiated from human induced pluripotent stem cells form mature synapses that exhibit robust evoked synaptic transmission. These neurons show plasticity features such as synaptic facilitation, depression, and recovery. Finally, we show that spontaneous events are a poor predictor of synaptic maturity and do not correlate with the robustness of evoked responses. This methodology can be deployed directly to evaluate disease models for synaptic dysfunction and can be leveraged for drug development and precision medicine.


Assuntos
Neurônios GABAérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese/genética , Plasticidade Neuronal/fisiologia , Análise de Célula Única/métodos , Transmissão Sináptica/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Ratos , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA