Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Exp Parasitol ; 249: 108520, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001581

RESUMO

Chagas Disease (CD) affects around eight million people worldwide. It is considered a neglected disease that presents few treatment options with efficacy only in the acute phase. Nanoparticles have many positive qualities for treating parasite infections and may be effectively and widely employed in clinical medicine. This research aimed to evaluate the nanoencapsulated benznidazole treatment in animals experimentally infected with Trypanosoma cruzi. To analyze the treatment efficacy, we evaluated survival during thirty days, parasitemia, genotoxicity, and heart and liver histopathology. Thirty-five female Swiss mice were organized into seven groups characterizing a dose curve: A - Negative control (uninfected animals), B - Positive control (infected animals), C - Benznidazole (BNZ) 100 mg/kg (infected animals), D - 5 mg/kg Benznidazole nanocapsules (NBNZ) (infected animals), E - 10 mg/kg Benznidazole nanocapsules (infected animals), F - 15 mg/kg Benznidazole nanocapsules (infected animals), G - 20 mg/kg Benznidazole nanocapsules (infected animals). The animals were infected with the Y strain of T. cruzi intraperitoneally. The treatment was administered for eight days by oral gavage. It was possible to observe that the treatment with the highest NBNZ dose presented efficacy similar to the standard benznidazole drug. The 20 mg/kg NBNZ dose was able to reduce parasitemia, increase survival, and drastically reduce heart and liver tissue damage compared to the 100 mg/kg BNZ dose. Moreover, it showed a lower DNA damage index than the BNZ treatment. In conclusion, the nanoencapsulation of BNZ promotes an improvement in parasite proliferation control with a five times smaller dose relative to the standard dose of free BNZ, thus demonstrating to be a potential innovative therapy for CD.


Assuntos
Doença de Chagas , Nanocápsulas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Camundongos , Animais , Feminino , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/parasitologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico
2.
Purinergic Signal ; 17(3): 493-502, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302569

RESUMO

Chagas disease (CD) is caused by the parasite Trypanosoma cruzi. CD affects people worldwide, primarily in tropical areas. The central nervous system (CNS) is an essential site for T. cruzi persistence during infection. The protozoan may pass through the blood-brain barrier and may cause motor and cognitive neuronal damage. Once in the CNS, T. cruzi triggers immune responses that the purinergic system can regulate. Treatment for CD is based on benznidazole (BNZ); however, this agent has negative side-effects and is toxic to the host. For this reason, we investigated whether resveratrol (RSV), a potent antioxidant and neuroprotective molecule, would modulate purinergic signaling and RSV alone or in combination with BNZ would prevent changes in purinergic signaling and oxidative damage caused by T. cruzi. We infected mice with T. cruzi and treated them with RSV or BNZ for 8 days. Increases in ATP and ADP hydrolysis by NTPDase in the total cortex of infected animals were observed. The treatment with RSV in infected group diminished ATP, ADP, and AMP hydrolysis compared to infected group. The combination of RSV + BNZ decreased AMP hydrolysis in infected animals compared to the INF group, exerting an anti-inflammatory effect. RSV acted as a neuroprotector, decreasing adenosine levels. Infected animals presented an increase of P2X7 and A2A density of purine receptors. RSV reduced P2X7 and A2A and increased A1 density receptors in infected animals. In addition, infected animals showed higher TBARS and reactive oxygen species (ROS) levels than control. RSV diminished ROS levels in infected mice, possibly due to antioxidant properties. In short, we conclude that resveratrol could act as a neuroprotective molecule, probably preventing inflammatory changes caused by infection by T. cruzi, even though the mice experienced high levels of parasitemia.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Doença de Chagas/metabolismo , Nitroimidazóis/administração & dosagem , Receptores Purinérgicos/biossíntese , Resveratrol/administração & dosagem , Doença Aguda , Animais , Antioxidantes/administração & dosagem , Córtex Cerebral/parasitologia , Doença de Chagas/tratamento farmacológico , Feminino , Expressão Gênica , Imunossupressores/administração & dosagem , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Receptores Purinérgicos/genética
3.
Parasitol Res ; 119(9): 2897-2905, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32677001

RESUMO

The central nervous system of the intermediate host plays a central role in lifelong persistence of Toxoplasma gondii as well as the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised individuals. The purinergic system has been implicated in a wide range of immunological pathways for controlling intracellular responses to pathogens, including T. gondii. In the present study, we investigated the effect of resveratrol (RSV) on ectonucleotidases, adenosine deaminase (ADA), and purinergic receptors during chronic infection by T. gondii. For this study, Swiss mice were divided into control (CTL), resveratrol (RSV), infected (INF), and INF+RSV groups. The animals were orally infected with the VEG strain and treated with RSV (100 mg/kg, orally). Ectonucleotidase activities, P2X7, P2Y1, A1, and A2A purinergic receptor density, ROS, and thiobarbituric acid reactive substances levels were measured in the cerebral cortex of mice. T. gondii infection increased NTPDase and reduced ADA activities. Treatment with RSV also affected enzymes hydrolysing extracellular nucleotides and nucleosides. Finally, RSV affected P1 and P2 purinergic receptor expression during T. gondii infection. Overall, RSV-mediated beneficial changes in purinergic signalling and oxidative stress, possibly improving cerebral cortex homeostasis in T. gondii infection.


Assuntos
Córtex Cerebral/parasitologia , Inibidores Enzimáticos/farmacologia , Fármacos Neuroprotetores/farmacologia , Resveratrol/farmacologia , Toxoplasmose Animal/tratamento farmacológico , Adenosina Desaminase/metabolismo , Animais , Camundongos , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Toxoplasma/imunologia
4.
J Cell Biochem ; 120(3): 3232-3242, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230598

RESUMO

Sepsis is a generalized infection that involves alterations in inflammatory parameters, oxidant status, and purinergic signaling in many tissues. Physical exercise has emerged as a tool to prevent this disease because of its anti-inflammatory and antioxidant properties. Thus, in this study, we investigated the effects of physical exercise on preventing alterations in purinergic system components, oxidative stress, and inflammatory parameters in lipopolysaccharide (LPS)-induced sepsis in rats. Male Wistar rats were divided into four groups: control, exercise (EX), LPS, and EX+LPS. The resisted physical exercise was performed for 12 weeks on a ladder with 1 m height. After 72 hours of the last exercise session, the animals received 2.5 mg/kg of LPS for induction of sepsis, and after 24 hours, lungs and blood samples were collected for analysis. The results showed that the exercise protocol used was able to prevent, in septic animals: (1) the increase in body temperature; (2) the increase of lipid peroxidation and reactive species levels in the lung, (3) the increase in adenosine triphosphate levels in serum; (4) the change in the activity of the enzymes ectonucleotidases in lymphocytes, partially; (5) the change in the density of purinergic enzymes and receptors in the lung, and (6) the increase of IL-6 and IL-1ß gene expression. Our results revealed the involvement of purinergic signaling and oxidative damage in the mechanisms by which exercise prevents sepsis aggravations. Therefore, the regular practice of physical exercise is encouraged as a better way to prepare the body against sepsis complications.


Assuntos
Lipopolissacarídeos/toxicidade , Condicionamento Físico Animal/fisiologia , Sepse/induzido quimicamente , Sepse/prevenção & controle , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Sepse/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Purinergic Signal ; 15(1): 77-84, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30535987

RESUMO

The effects of Toxoplasma gondii during embryonic development have not been explored despite the predilection of this parasite for neurons and glial cells. Here, we investigated the activation of the purinergic system and proinflammatory responses during congenital infection by T. gondii. Moreover, neuroprotective and neuromodulatory properties of resveratrol (RSV), a polyphenolic natural compound, were studied in infected neuronal progenitor cells (NPCs). For this study, NPCs were isolated from the telencephalon of infected mouse embryos and subjected to neurosphere culture in the presence of EGF and FGF2. ATP hydrolysis and adenosine deamination by adenosine deaminase activity were altered in conditions of T. gondii infection. P2X7 and adenosine A2A receptor expression rates were augmented in infected NPCs together with an increase of proinflammatory (INF-γ and TNF-α) and anti-inflammatory (IL-10) cytokine gene expression. Our results confirm that RSV counteracted T. gondii-promoted effects on enzymes hydrolyzing extracellular nucleotides and nucleosides and also upregulated P2X7 and A2A receptor expression and activity, modulating INF-γ, TNF-α, and IL-10 cytokine production, which plays an integral role in the immune response against T. gondii.


Assuntos
Antioxidantes/farmacologia , Células-Tronco Neurais , Receptor A2A de Adenosina/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Resveratrol/farmacologia , Toxoplasmose/metabolismo , Animais , Feminino , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/microbiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologia , Purinas/metabolismo , Receptor A2A de Adenosina/imunologia , Receptores Purinérgicos P2X7/imunologia , Toxoplasmose/imunologia
6.
Arch Toxicol ; 93(9): 2515-2524, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31363819

RESUMO

Aluminum (Al) is a neurotoxin and is associated with the etiology of neurodegenerative diseases, such as Alzheimer's disease (AD). The Al-free ion (Al3+) is the biologically reactive and toxic form. However, the underlying mechanisms of Al toxicity in the brain remain unclear. Here, we evaluated the effects of Al3+ (in the chloride form-AlCl3) at different concentrations (0.1-100 µM) on the morphology, proliferation, apoptosis, migration and differentiation of neural progenitor cells (NPCs) isolated from embryonic telencephalons, cultured as neurospheres. Our results reveal that Al3+ at 100 µM reduced the number and diameter of neurospheres. Cell cycle analysis showed that Al3+ had a decisive function in proliferation inhibition of NPCs during neural differentiation and induced apoptosis on neurospheres. In addition, 1 µM Al3+ resulted in deleterious effects on neural phenotype determination. Flow cytometry and immunocytochemistry analysis showed that Al3+ promoted a decrease in immature neuronal marker ß3-tubulin expression and an increase in co-expression of the NPC marker nestin and glial fibrillary acidic protein. Thus, our findings indicate that Al3+ caused cellular damage and reduced proliferation and migration, resulting in global inhibition of NPC differentiation and neurogenesis.


Assuntos
Cloreto de Alumínio/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/patologia , Feminino , Masculino , Camundongos , Células-Tronco Neurais/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/fisiopatologia , Fenótipo , Telencéfalo/efeitos dos fármacos , Telencéfalo/embriologia
7.
J Cell Biochem ; 119(7): 6249-6257, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29663535

RESUMO

The purinergic system has an important role in the regulation of vascular functions. The interference of thyroid hormones in this system and in cardiovascular events has been studied in recent years. However, the mechanisms involved in vascular, purinergic, and oxidative changes in thyroid disorders are not completely understood. Therefore, the present study aimed to assess purinergic enzyme activity in platelets from rats with hypothyroidism and hyperthyroidism induced, respectively, by continuous exposure to methimazole (MMI) at 20 mg/100 mL or L-thyroxine at 1.2 mg/100 mL in drinking water for 1 month. Results showed that rats exposed to L-thyroxine had a significant decrease in NTPDase activity, wherein ATP hydrolysis was 53% lower and ADP hydrolysis was 40% lower. Moreover, ecto-5'-nucleotidase activity was decreased in both groups, by 39% in the hypothyroidism group and by 52% in the hyperthyroidism group. On the other hand, adenosine deaminase (ADA) activity was increased in hyperthyroidism (75%), and nucleotide pyrophosphatase/phosphodiesterase (NPP) activity was increased in animals with hypothyroidism (127%) and those with hyperthyroidism (128%). Our findings suggest that changes in purinergic enzyme and purine levels could contribute to the undesirable effects of thyroid disturbances. Moreover, oxidative stress and, in particular, a high level of ROS production, showed a causal relation with changes in ectonucleotidase activity and nucleotide and nucleoside levels.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Plaquetas/enzimologia , Hipertireoidismo/enzimologia , Hipotireoidismo/enzimologia , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Hidrólise , Hipertireoidismo/sangue , Hipertireoidismo/induzido quimicamente , Hipotireoidismo/sangue , Hipotireoidismo/induzido quimicamente , Masculino , Metimazol/toxicidade , Estresse Oxidativo , Ratos , Ratos Wistar
8.
Cell Mol Neurobiol ; 37(1): 53-63, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26879755

RESUMO

Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.


Assuntos
5'-Nucleotidase/metabolismo , Acetilcolinesterase/metabolismo , Hipotireoidismo/enzimologia , Nucleosídeo-Trifosfatase/metabolismo , Quercetina/uso terapêutico , Sinaptossomos/enzimologia , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Hipotireoidismo/tratamento farmacológico , Masculino , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Quercetina/farmacologia , Ratos , Ratos Wistar , Sinaptossomos/efeitos dos fármacos
9.
Biomarkers ; 21(6): 530-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27075266

RESUMO

CONTEXT: This study aims to explore the potential of new inflammatory markers for improving the challenging diagnosis of acute appendicitis (AA). METHODS: Levels of IL-1, IL-6, IL-8, IL-10, CRP, INF-γ, and TNF-α in serum were measured in 73 patients with AA. Oxidative stress and antioxidant enzymes were analyzed. RESULTS: Serum levels of interleukins, TNF-α, and INF-γ were significantly elevated in patients with appendicitis (p < 0.0001), except for IL-10, which presented decreased levels. There were no significant differences in SOD (p = 0.29), CAT (p = 0.19), or TBARS levels (p = 0.18), whereas protein carbonyls presented significant increase (p < 0.0001). CONCLUSION: Evaluating these biomarkers could aid in diagnosing AA.


Assuntos
Apendicite/sangue , Citocinas/sangue , Estresse Oxidativo , Adolescente , Adulto , Idoso , Apendicite/diagnóstico , Biomarcadores/sangue , Estudos de Casos e Controles , Catalase/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Superóxido Dismutase/sangue , Adulto Jovem
10.
Cell Biochem Funct ; 32(3): 287-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24301255

RESUMO

We investigated the efficacy of rosmarinic acid (RA) in preventing lipid peroxidation and increased activity of acetylcholinesterase (AChE) in the brain of streptozotocin-induced diabetic rats. The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol and diabetic/RA 10 mg/kg. After 21 days of treatment with RA, the cerebral structures (striatum, cortex and hippocampus) were removed for experimental assays. The results demonstrated that the treatment with RA (10 mg/kg) significantly reduced the level of lipid peroxidation in hippocampus (28%), cortex (38%) and striatum (47%) of diabetic rats when compared with the control. In addition, it was found that hyperglycaemia caused significant increased in the activity of AChE in hippocampus (58%), cortex (46%) and striatum (30%) in comparison with the control. On the other hand, the treatment with RA reversed this effect to the level of control after 3 weeks. In conclusion, the present findings showed that treatment with RA prevents the lipid peroxidation and consequently the increase in AChE activity in diabetic rats, demonstrating that this compound can modulate cholinergic neurotransmission and prevent damage oxidative in brain in the diabetic state. Thus, we can suggest that RA could be a promising compound in the complementary therapy in diabetes.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Cinamatos/farmacologia , Depsídeos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Masculino , Ratos , Ratos Wistar , Estreptozocina , Ácido Rosmarínico
11.
Steroids ; 203: 109352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128896

RESUMO

Physical exercise is recognized as a non-pharmacological approach to treat and protect against several neuroinflammatory conditions and thus to prevent brain disorders. However, the interest in ergogenic resources by athletes and bodybuilding practitioners is widespread and on the rise. These substances shorten the process of performance gain and improve aesthetics, having led to the prominent use and abuse of hormones in the past years. Recent evidence has shown that the purinergic system, composed of adenine nucleotides, nucleosides, enzymes, and receptors, participates in a wide range of processes within the brain, such as neuroinflammation, neuromodulation, and cellular communication. Here, we investigated the effects of the anabolic androgenic steroid (AAS) testosterone (TES) at a dose of 70 mg/kg/week in female rats and the neuroprotective effect of resistance exercise related to the purinergic system and oxidative stress parameters. Our findings showed a decrease in ATP and ADO hydrolysis in treated and trained animals. Furthermore, there was an increase in the density of purinoceptors (P2X7 and A2A) and inflammatory markers (IBA-1, NRLP3, CASP-1, IL-1ß, and IL-6) in the cerebral cortex of animals that received AAS. On the other hand, exercise reversed neuroinflammatory parameters such as IBA-1, NLRP3, CASP-1, and IL-1ß and improved antioxidant response and anti-inflammatory IL-10 cytokine levels. Overall, this study shows that the use of TES without indication or prescription disrupts brain homeostasis, as demonstrated by the increase in neuroinflammation, and that the practice of exercise can protect brain health.


Assuntos
Anabolizantes , Treinamento Resistido , Humanos , Ratos , Feminino , Animais , Testosterona , Anabolizantes/farmacologia , Doenças Neuroinflamatórias , Congêneres da Testosterona/farmacologia , Encéfalo
12.
J Psychopharmacol ; : 2698811241273776, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39262284

RESUMO

BACKGROUND: Blackcurrant (Ribes nigrum L.) is a berry rich in anthocyanins, bioactive compounds known for their antioxidant and neuroprotective properties that benefit human health. AIMS: This study aimed to investigate the effects of blackcurrant and its association with Donepezil on memory impairment, cholinergic neurotransmission, and antioxidant systems in a mouse model of amnesia induced by chronic administration of Scopolamine. METHODS: Adult male Swiss mice were given saline, blackcurrant (50 mg/kg, orally), and/or Donepezil (5 mg/kg, orally) and/or Scopolamine (1 mg/kg, intraperitoneally). RESULTS: Behavioral tests revealed that blackcurrant and/or Donepezil prevented the learning and memory deficits induced by Scopolamine. In the cerebral cortex and hippocampus, blackcurrant and/or Donepezil treatments prevented the increase in acetylcholinesterase and butyrylcholinesterase activities induced by Scopolamine. Scopolamine also disrupted the glutathione redox system and increased levels of reactive species; nevertheless, blackcurrant and/or Donepezil treatments were able to prevent oxidative stress. Furthermore, these treatments prevented the increase in gene expression and protein density of acetylcholinesterase and the decrease in gene expression of the choline acetyltransferase enzyme induced by Scopolamine. CONCLUSIONS: Findings suggest that blackcurrant and Donepezil, either alone or in combination, have anti-amnesic effects by modulating cholinergic system enzymes and improving the redox profile. Therefore, blackcurrant could be used as a natural supplement for the prevention and treatment of memory impairment in neurodegenerative diseases.

13.
J Nutr Biochem ; 127: 109602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373509

RESUMO

This study evaluated the effect of vitamin D3 (VIT D3) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1ß, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D3 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D3 12 µg/kg. Results show that VIT D3 reduced blood glucose, ATP hydrolysis, ADA activity, P2Y12R density (platelets), as well as ATP, ADP, and AMP hydrolysis and ADA activity (synaptosomes). Moreover, VIT D3 increased insulin levels and AMP hydrolysis (platelets) and improved antioxidant defense. Therefore, we suggest that VIT D3 treatment modulates hyperglycemia-induced changes via purinergic enzymes and receptor expression, consequently attenuating insulin homeostasis dysregulation in the diabetic state.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insulinas , Ratos , Masculino , Animais , Ratos Wistar , Colecalciferol/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Vitaminas , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo
14.
J Nutr Biochem ; 115: 109280, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36796549

RESUMO

The present study evaluated the effect of caffeic acid (CA) on behavioral learning and memory tasks in the diabetic state. We also evaluated the effect of this phenolic acid on the enzymatic activities of acetylcholinesterase, ecto-nucleoside triphosphate diphosphohydrolase, ecto-5-nucleotidase and adenosine deaminase as well as on the density of M1R, α7nAChR, P2×7R, A1R, A2AR, and inflammatory parameters in the cortex and hippocampus of diabetic rats. Diabetes was induced by a single intraperitoneal dose of streptozotocin (55 mg/kg). The animals were divided into six groups: control/vehicle; control/CA 10 and 50 mg/kg; diabetic/vehicle; diabetic/CA 10 and 50 mg/kg, treated by gavage. The results showed that CA improved learning and memory deficits in diabetic rats. Also, CA reversed the increase in acetylcholinesterase and adenosine deaminase activities and reduced ATP and ADP hydrolysis. Moreover, CA increased the density of M1R, α7nAChR, and A1R receptors and reversed the increase in P2×7R and A2AR density in both evaluated structures. In addition, CA treatment attenuated the increase in NLRP3, caspase 1, and interleukin 1ß density in the diabetic state; moreover, it increased the density of interleukin-10 in the diabetic/CA 10 mg/kg group. The results indicated that CA treatment positively modified the activities of cholinergic and purinergic enzymes and the density of receptors, and improved the inflammatory parameters of diabetic animals. Thus, the outcomes suggest that this phenolic acid could improve the cognitive deficit linked to cholinergic and purinergic signaling in the diabetic state.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Ratos , Animais , Ratos Wistar , Adenosina Desaminase/metabolismo , Acetilcolinesterase/metabolismo , Estreptozocina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Doenças Neuroinflamatórias , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Transdução de Sinais , Colinérgicos/uso terapêutico
15.
Neurotoxicology ; 99: 217-225, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890558

RESUMO

Resistance physical exercise has neuroprotective and anti-inflammatory effects on many known diseases and, therefore, it has been increasingly explored. The way in which this type of exercise exerts these actions is still under investigation. In this study, we aimed to analyze the enzymes and components of the purinergic system involved in the inflammatory process triggered by the P2X7R. Rats were divided into four groups: control, exercise (EX), lipopolysaccharide (LPS), and EX + LPS. The animals in the exercise groups were subjected to a 12-week ladder-climbing resistance physical exercise and received LPS after the last session for sepsis induction. Enzymes activities (NTPDase, 5'-nucleotidase, and adenosine deaminase), purinoceptors' density (P2X7R, A1, and A2A), and the levels of inflammatory indicators (pyrin domain-containing protein 3 (NLRP3), Caspase-1, interleukin (IL)- 6, IL-1B, and tumor necrosis factor (TNF) -α) were measured in the cortex and hippocampus of the animals. The results show that exercise prevented (in the both structures) the increase of: 1) nucleoside-triphosphatase (NTPDase) and 5'-nucleotidase activities; 2) P2X7R density; 3) NLRP3 and Caspase-1; and 4) IL-6, IL-1ß, and TNF-α It is suggested that the purinergic system and the inflammatory pathway of P2X7R are of fundamental importance and influence the effects of resistance physical exercise on LPS-induced inflammation. Thus, the modulation of the P2X7R by resistance physical exercise offers new avenues for the management of inflammatory-related illnesses.


Assuntos
Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/toxicidade , 5'-Nucleotidase/metabolismo , Doenças Neuroinflamatórias , Hipocampo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Exercício Físico , Caspases/metabolismo , Receptores Purinérgicos P2X7/metabolismo
16.
Mol Neurobiol ; 59(2): 841-855, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34792730

RESUMO

Alzheimer's disease (AD) is a neurodegenerative pathology characterized by progressive impairment of memory, associated with neurochemical alterations and limited therapy. The aim of this study was to evaluate the effects of inosine on memory, neuroinflammatory cytokines, neurotrophic factors, expression of purinergic receptors, and morphological changes in the hippocampus and cerebral cortex of the rats with AD induced by streptozotocin (STZ). Male rats were divided into four groups: I, control; II, STZ; III, STZ plus inosine (50 mg/kg); and IV, STZ plus inosine (100 mg/kg). The animals received intracerebroventricular injections of STZ or buffer. Three days after the surgical procedure, animals were treated with inosine (50 mg/kg or 100 mg/kg) for 25 days. Inosine was able to prevent memory deficits and decreased the immunoreactivity of the brain A2A adenosine receptor induced by STZ. Inosine also increased the levels of brain anti-inflammatory cytokines (IL-4 and IL-10) and the expression of brain-derived neurotrophic factor and its receptor. Changes induced by STZ in the molecular layer of the hippocampus were attenuated by treatment with inosine. Inosine also protected against the reduction of immunoreactivity for synaptophysin induced by STZ in CA3 hippocampus region. However, inosine did not prevent the increase in GFAP in animals exposed to STZ. In conclusion, our findings suggest that inosine has therapeutic potential for AD through the modulation of different brain mechanisms involved in neuroprotection.


Assuntos
Doença de Alzheimer , Inosina , Receptores Purinérgicos , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Inosina/farmacologia , Inosina/uso terapêutico , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Doenças Neuroinflamatórias , Ratos , Ratos Wistar , Receptores Purinérgicos/metabolismo , Estreptozocina
17.
J Food Biochem ; : e13862, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245033

RESUMO

This study examined the behavioral responses, purinergic receptor densities, ectonucleotidases (E-NTPDase), adenosine deaminase (ADA) activity, and nitric oxide (NO) levels along with the parameters of oxidative stress-related to erectile function in the cerebral cortex (CC) of L-NAME-challenged rats pretreated with tigernut (TN) and walnut (WN) dietary supplementation. Wistar rats (male) of 70 total animals (250-300 g) were used in this research and hence separated into seven groups (n = 10): Group I: normal control-fed basal diet; Group II: positive control-fed basal diet/L-NAME/Sildenafil citrate (5 mg kg-1  day-1 ); Group III: ED-induced (placed on a basal diet/L-NAME); Group IV: diet supplemented with processed TN (20%)/L-NAME; Group V: diet supplemented with raw TN (20%)/L-NAME; Group VI: diet supplemented with processed WN (20%)/L-NAME; and Group VII placed on a diet supplemented with raw WN (20%)/L-NAME. The rats were pretreated for 2 weeks before the L-NAME (40 mg kg-1  day-1 ) challenge on their respective diet. L-NAME brought about a decrease in the sexual behaviors evaluated while the effect was significantly reversed by supplemented diets containing TN and WN. L-NAME increased the levels of reactive oxygen species and malondialdehyde, E-NTPDase as well as ADA activities, and caused the level of NO in the CC as well as the purinoreceptor densities to be downregulated. Treatments with enriched diets, however, greatly reverse these effects. The behavioral responses and neuromodulatory capacity of the nuts displayed on the CC can, therefore, further support their aphrodisiac property. PRACTICAL APPLICATIONS: The results revealed the ability of tigernut (TN; Cyperus esculentus L.) and walnut (WN; Tetracarpidium conophorum Müll. Arg.) to enhance behavioral responses; modulate purinergic receptor densities, E-NTPDase, and ADA activities; increase NO levels; and prevent oxidative stress related to erectile function in the CC of L-NAME-challenged Wistar rats. The results show that these nuts are useful feeds for both animal and human nutrition.

18.
Biomed Pharmacother ; 137: 111273, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33524787

RESUMO

Diabetes mellitus (DM) and hypertension are highly prevalent worldwide health problems and frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy, stroke, and cardiac arrhythmia, among others. Despite all existing research results and reasonable speculations, knowledge about the role of purinergic system in individuals with DM and hypertension remains restricted. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. The main components of this system that will be presented in this review are: P1 and P2 receptors and the enzymatic cascade composed by CD39 (NTPDase; with ATP and ADP as a substrate), CD73 (5'-nucleotidase; with AMP as a substrate), and adenosine deaminase (ADA; with adenosine as a substrate). The purinergic system has recently emerged as a central player in several physiopathological conditions, particularly those linked to inflammatory responses such as diabetes and hypertension. Therefore, the present review focuses on changes in both purinergic P1 and P2 receptor expression as well as the activities of CD39, CD73, and ADA in diabetes and hypertension conditions. It can be postulated that the manipulation of the purinergic axis at different levels can prevent or exacerbate the insurgency and evolution of diabetes and hypertension working as a compensatory mechanism.


Assuntos
Diabetes Mellitus/metabolismo , Hipertensão/metabolismo , Purinas/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Comunicação Celular , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus/terapia , Dieta Saudável , Exercício Físico , Humanos , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Hipertensão/terapia , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Antagonistas do Receptor Purinérgico P2/uso terapêutico , Transdução de Sinais
19.
Mol Cell Endocrinol ; 524: 111157, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33421531

RESUMO

Both the cholinergic pathway and oxidative stress are important mechanisms involved in the pathogenesis of hypothyroidism, a condition characterized by low levels of thyroid hormone that predispose the patient to brain dysfunction. Phenolic compounds have numerous health benefits, including antioxidant activity. This study evaluates the preventive effects of resveratrol in the cholinergic system and redox status in rats with methimazole-induced hypothyroidism. Hypothyroidism increases acetylcholinesterase (AChE) activity and density in the cerebral cortex and hippocampus and decreases the α7 and M1 receptor densities in the hippocampus. Hypothyroidism also increases cellular levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), but reduces total thiol content, and catalase and superoxide dismutase activities in the serum. In the cerebral cortex and hippocampus, hypothyroidism increases the levels of ROS and nitrites. In this study, resveratrol (50 mg/kg) treatment prevents the observed increase in AChE in the cerebral cortex, and increases the protein levels of NeuN, a marker of mature neurons. Resveratrol also prevents changes in serum ROS levels and brain structure, as well as the levels of TBARS, total thiol content, and serum catalase enzyme activity. These collective findings suggest that resveratrol has a high antioxidant capacity and can restore hypothyroidism-triggered alterations related to neurotransmission. Thus, it is a promising agent for the prevention of brain damage resulting from hypothyroidism.


Assuntos
Colinérgicos/metabolismo , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Neuroproteção/efeitos dos fármacos , Resveratrol/farmacologia , Transdução de Sinais , Acetilcolinesterase/metabolismo , Animais , Antígenos Nucleares/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Hipotireoidismo/sangue , Masculino , Proteínas do Tecido Nervoso/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Receptores Colinérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiroxina/sangue , Tri-Iodotironina/sangue
20.
J Immunol Res ; 2021: 2695490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532505

RESUMO

Aluminum (Al) is ubiquitously present in the environment and known to be a neurotoxin for humans. The trivalent free Al anion (Al3+) can cross the blood-brain barrier (BBB), accumulate in the brain, and elicit harmful effects to the central nervous system (CNS) cells. Thus, evidence has suggested that Al increases the risk of developing neurodegenerative diseases, particularly Alzheimer's disease (AD). Purinergic signaling has been shown to play a role in several neurological conditions as it can modulate the functioning of several cell types, such as microglial cells, the main resident immune cells of the CNS. However, Al effects on microglial cells and the role of the purinergic system remain elusive. Based on this background, this study is aimed at assessing the modulation of Al on purinergic system parameters of microglial cells. An in vitro study was performed using brain microglial cells exposed to Al chloride (AlCl3) and lipopolysaccharide (LPS) for 96 h. The uptake of Al, metabolism of nucleotides (ATP, ADP, and AMP) and nucleoside (adenosine), and the gene expression and protein density of purinoceptors were investigated. The results showed that both Al and LPS increased the breakdown of adenosine, whereas they decreased nucleotide hydrolysis. Furthermore, the findings revealed that both Al and LPS triggered an increase in gene expression and protein density of P2X7R and A2AR receptors, whereas reduced the A1R receptor expression and density. Taken together, the results showed that Al and LPS altered the setup of the purinergic system of microglial cells. Thus, this study provides new insights into the involvement of the purinergic system in the mechanisms underlying Al toxicity in microglial cells.


Assuntos
Alumínio/efeitos adversos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Receptores Purinérgicos/metabolismo , Animais , Biomarcadores , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/metabolismo , Linhagem Celular , Células Cultivadas , Imunofluorescência , Expressão Gênica , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Microglia/imunologia , Receptores Purinérgicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA