RESUMO
Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF.
RESUMO
[This corrects the article DOI: 10.1371/journal.pgen.1006346.].
RESUMO
Peptide hormones are key messengers in the signaling network between the nervous system, endocrine glands, energy stores and the gastrointestinal tract that regulates feeding and metabolism. Studies on the Drosophila nervous system have uncovered parallels and homologies in homeostatic peptidergic signaling between fruit flies and vertebrates. Yet, the role of enteroendocrine peptides in the regulation of feeding and metabolism has not been explored, with research hampered by the unknown identity of peptides produced by the fly's intestinal tract. We performed a peptidomic LC/MS analysis of the fruit fly midgut containing the enteroendocrine cells. By MS/MS fragmentation, we found 24 peptides from 9 different preprohormones in midgut extracts, including MIP-4 and 2 forms of AST-C. DH(31), CCHamide1 and CCHamide2 are biochemically characterized for the first time. All enteroendocrine peptides represent brain-gut peptides, and apparently are processed by Drosophila prohormone convertase 2 (AMON) as suggested by impaired peptide detectability in amon mutants and localization of amon-driven GFP to enteroendocrine cells. Because of its genetic amenability and peptide diversity, Drosophila provides a good model system to study peptide signaling. The identification of enteroendocrine peptides in the fruit fly provides a platform to address functions of gut peptide hormones in the regulation of feeding and metabolism.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/metabolismo , Hormônios de Inseto/metabolismo , Hormônios Peptídicos/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Animais , Cromatografia Líquida/métodos , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Trato Gastrointestinal/metabolismo , Hormônios de Inseto/química , Hormônios de Inseto/genética , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Hormônios Peptídicos/química , Hormônios Peptídicos/genéticaRESUMO
Molecular data for nephridial development in polychaetes are not available yet. The scope of our work was to establish a reference system for future investigations using two markers for nephridial development: beta-tubulin as marker for cilia and alkaline phosphatase (AP) activity for secretory epithelia. The markers identified, unexpectedly, three consecutively forming generations of nephridia: (1) a transitory unciliated, but AP-positive head kidney, (2) a transitory larval nephridium, which undergoes a morphological transition from a protonephridium to a funnelled nephridium concomitant with the development of the coelomic cavity and finally, (3) the serially arranged metanephridia. The spatial arrangement of larval and definitive nephridia, revealed an up to now unknown developmental boundary between the synchronously forming larval and the serially proliferating definitive segments. Development of three consecutive sets of nephridia with different morphology and biochemical properties was unexpected and reveals an interesting multistep process in the development of excretory structures in Platynereis.
Assuntos
Larva/crescimento & desenvolvimento , Poliquetos/embriologia , Fosfatase Alcalina/metabolismo , Animais , Imuno-Histoquímica , Larva/metabolismo , Larva/ultraestrutura , Microscopia Eletrônica de Transmissão , Poliquetos/metabolismo , Poliquetos/ultraestrutura , Tubulina (Proteína)/metabolismoRESUMO
The genitalia of the female folding-trapdoor spider Antrodiaetus unicolor are characterized by two pairs of spermathecae that are arranged in a single row and connected to the roof of the bursa copulatrix. Each single spermatheca is divided into three main parts: stalk, bowl, and bulb, which are surrounded by the spermathecal gland. The epithelium of the spermathecal gland is underlain by a muscle meshwork and consists of different types of cells partly belonging to glandular cell units (Class 3 gland cells) that extend into pores in the cuticle of the stalk and bowl. Interestingly, the bulb lacks glandular pores and is characterized by a weakly sclerotized cuticle. This peculiarly structured bulb probably plays an important role in the discharge of the sperm mass. It is suggested that by contraction of the muscle layer the sperm mass may be squeezed out, when the bulb invaginates and expands into the spermathecal lumen, pushing the sperm to the uterus lumen. Each glandular unit consists of usually one or two central secretory cells that are for the most part surrounded by a connecting cell that again is surrounded by a canal cell. The canal cell, finally, is separated from the other epithelial cells (intercalary cells) located between the glandular units by several thin sheath cells that form the outer enveloping layer of the unit. The secretions are released through a cuticular duct that originates proximally between the apical part of the connecting cell and the apical microvilli of the secretory cells and runs into a pore of the spermathecal cuticle. The glandular products of the Class 3 gland cells likely contribute to the conditions allowing long-term storage of the spermatozoa in this species. Details regarding the ovary, the uterus internus, and the uterus externus are reported. Most of the secretion that composes the chorion of the egg is produced in the ovary. Glandular cell units observed in the uterus externus differ structurally from those in the spermathecae and likely play a different role. Finally, we briefly discuss our results on the female genitalia of A. unicolor in the light of knowledge about the reproductive biology of spiders.
Assuntos
Genitália Feminina/ultraestrutura , Aranhas/ultraestrutura , Animais , Feminino , Genitália Feminina/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reprodução/fisiologia , Aranhas/fisiologiaRESUMO
SIFamides are a family of highly conserved arthropod neuropeptides. To date, nine orthocopies from different arthropods, most of them insects, have been identified, all consisting of 11-12 amino acid residues. The striking conservation in sequence is mirrored by highly similar morphologies of SIFamide-immunoreactive neurons: immunolabeling in various insect species revealed four immunopositive neurons with somata in the pars intercerebralis and arborizations extending throughout the brain and ventral nervous system. In contrast, the functional role of these neurons and their neuropeptide SIFamide is largely obscure. To provide an additional basis for functional analysis, we identified, by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, a SIFamide peptide in the desert locust Schistocerca gregaria and studied its distribution throughout the nervous system. Identification was supported by analysis of transcriptomic data obtained from another grasshopper, Stenobothrus lineatus. Scg-SIFamide, unlike all SIFamides identified so far, is a pentadecapeptide with an extended and highly modified N-terminus (AAATFRRPPFNGSIFamide). As in other insects, pairs of descending neurons with somata in the pars intercerebralis and ramifications in most areas of the nervous system are SIFamide-immunoreactive. In addition, a small number of local interneurons in the brain and ventral ganglia were immunostained. Double-label experiments showed that the SIFamide-immunoreactive descending neurons are identical to previously characterized primary commissure pioneer (PNP) neurons of the locust brain that pioneer the first commissure in the brain. The data suggest that the descending SIFamide-immunoreactive neurons play a developmental role in organizing the insect central nervous system. J. Comp. Neurol. 523:108-125, 2015. © 2014 Wiley Periodicals, Inc.
Assuntos
Gafanhotos/metabolismo , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Animais , Gafanhotos/anatomia & histologia , Gafanhotos/genética , Imuno-Histoquímica , Proteínas de Insetos/genética , Sistema Nervoso/anatomia & histologia , Sistema Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/genética , Homologia de Sequência , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , TranscriptomaRESUMO
The larvae of the cabbage root fly induce serious damage to cultivated crops of the family Brassicaceae. We here report the biochemical characterisation of neuropeptides from the central nervous system and neurohemal organs, as well as regulatory peptides from enteroendocrine midgut cells of the cabbage maggot. By LC-MALDI-TOF/TOF and chemical labelling with 4-sulfophenyl isothiocyanate, 38 peptides could be identified, representing major insect peptide families: allatostatin A, allatostatin C, FMRFamide-like peptides, kinin, CAPA peptides, pyrokinins, sNPF, myosuppressin, corazonin, SIFamide, sulfakinins, tachykinins, NPLP1-peptides, adipokinetic hormone and CCHamide 1. We also report a new peptide (Yamide) which appears to be homolog to an amidated eclosion hormone-associated peptide in several Drosophila species. Immunocytochemical characterisation of the distribution of several classes of peptide-immunoreactive neurons and enteroendocrine cells shows a very similar but not identical peptide distribution to Drosophila. Since peptides regulate many vital physiological and behavioural processes such as moulting or feeding, our data may initiate the pharmacological testing and development of new specific peptide-based protection methods against the cabbage root fly and its larva.