Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762041

RESUMO

Pectin is a complex polysaccharide that forms a substantial proportion of the plant's middle lamella of forage ingested by grazing ruminants. Methanol in the rumen is derived mainly from methoxy groups released from pectin by the action of pectin methylesterase (PME) and is subsequently used by rumen methylotrophic methanogens that reduce methanol to produce methane (CH4). Members of the genus Butyrivibrio are key pectin-degrading rumen bacteria that contribute to methanol formation and have important roles in fibre breakdown, protein digestion, and the biohydrogenation of fatty acids. Therefore, methanol release from pectin degradation in the rumen is a potential target for CH4 mitigation technologies. Here, we present the crystal structures of PMEs belonging to the carbohydrate esterase family 8 (CE8) from Butyrivibrio proteoclasticus and Butyrivibrio fibrisolvens, determined to a resolution of 2.30 Å. These enzymes, like other PMEs, are right-handed ß-helical proteins with a well-defined catalytic site and reaction mechanisms previously defined in insect, plant, and other bacterial pectin methylesterases. Potential substrate binding domains are also defined for the enzymes.


Assuntos
Metanol , Rúmen , Animais , Butyrivibrio , Carboxilesterase , Bactérias , Pectinas
2.
Microbiol Resour Announc ; 13(4): e0004324, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38426731

RESUMO

Methanosphaera spp. are methylotrophic methanogenic archaea and members of the order Methanobacteriales with few cultured representatives. Methanosphaera sp. ISO3-F5 was isolated from sheep rumen contents in New Zealand. Here, we report its complete genome, consisting of a large chromosome and a megaplasmid (GenBank accession numbers CP118753 and CP118754, respectively).

3.
Front Microbiol ; 13: 816695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359731

RESUMO

Agricultural methane produced by archaea in the forestomach of ruminants is a key contributor to rising levels of greenhouse gases leading to climate change. Functionalized biological polyhydroxybutyrate (PHB) nanoparticles offer a new concept for the reduction of enteric methane emissions by inhibiting rumen methanogens. Nanoparticles were functionalized in vivo with an archaeal virus lytic enzyme, PeiR, active against a range of rumen Methanobrevibacter species. The impact of functionalized nanoparticles against rumen methanogens was demonstrated in pure cultures, in rumen batch and continuous flow rumen models yielding methane reduction of up to 15% over 11 days in the most complex system. We further present evidence of biological nanoparticle fermentation in a rumen environment. Elevated levels of short-chain fatty acids essential to ruminant nutrition were recorded, giving rise to a promising new strategy combining methane mitigation with a possible increase in animal productivity.

4.
Foods ; 11(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35327276

RESUMO

The high mortality rate associated with Listeria monocytogenes and its ability to adapt to the harsh conditions employed in food processing has ensured that this pathogen remains a serious problem in the ready-to-eat food sector. Bacteriophage-derived enzymes can be applied as biocontrol agents to target specific foodborne pathogens. We investigated the ability of a listeriophage endolysin and derivatives thereof, fused to polyhydroxyalkanoate bionanoparticles (PHA_BNPs), to lyse and inhibit the growth of L. monocytogenes. Turbidity reduction assays confirmed the lysis of L. monocytogenes cells at 37 °C upon addition of the tailored BNPs. The application of BNPs also resulted in the growth inhibition of L. monocytogenes. BNPs displaying only the amidase domain of the phage endolysin were more effective at inhibiting growth under laboratory conditions (37 °C, 3 × 107 CFU/mL) than BNPs displaying the full-length endolysin (89% vs. 83% inhibition). Under conditions that better represent those found in food processing environments (22 °C, 1 × 103 CFU/mL), BNPs displaying the full-length endolysin demonstrated a greater inhibitory effect compared to BNPs displaying only the amidase domain (61% vs. 54% inhibition). Our results demonstrate proof-of-concept that tailored BNPs displaying recombinant listeriophage enzymes are active inhibitors of L. monocytogenes.

5.
Front Microbiol ; 12: 562748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981289

RESUMO

The Mycobacteria are a genus of Actinobacteria that include human pathogens such as Mycobacterium tuberculosis (TB). Active TB disease can spread by airborne transmission to healthcare workers and to their community. The HHMI SEA-PHAGES program has contributed to discovering bacteriophages that are able to infect M. smegmatis MC2 155, a close relative of M. tuberculosis. This collection of diverse Mycobacteriophages is an excellent resource for trialling bacteriophage-sourced enzymes in novel applications. Herein we measured the ability Mycobacteriophage endolysins to lyse their host strain when functionally fused to biodegradable polyhydroxyalkanoate (PHA) nanobeads. PHA nanobeads facilitate both the expression and the application of enzymes to surfaces and have been demonstrated to stabilize a wide array of proteins for practical applications whilst eliminating the challenges of traditional protein purification. We selected two Lysin A and six Lysin B homologs to be functionally fused to the polyhydroxyalkanoate synthase C (PhaC). Expression of these constructs resulted in functional lysins displayed on the surface of PHA nanobeads. The lysins thus directionally displayed on nanobeads lysed up to 79% of the M. smegmatis MC2 155 population using 80 mg/mL of nanobeads in pure culture. In order to determine whether the nanobeads would be effective as a protective layer in PPE we adapted a fabric-based test and observed a maximum of 1 log loss of the cell population after 5 h of exposure on a textile (91% cell lysis). Lysin B enzymes performed better than the Lysin A enzymes as a protective barrier on textiles surface assays. These results suggest that bacterial endolysins are efficient in their action when displayed on PHA nanobeads and can cause significant population mortality in as little as 45 min. Our results provide the proof-of-principle that Mycobacteriophage endolysins can be used on functionalized nanobeads where they can protect surfaces such as personal protective equipment (PPE) that routinely come into contact with aerosolised bacteria.

6.
Front Microbiol ; 12: 786156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35237240

RESUMO

Agriculture is fundamental for food production, and microbiomes support agriculture through multiple essential ecosystem services. Despite the importance of individual (i.e., niche specific) agricultural microbiomes, microbiome interactions across niches are not well-understood. To observe the linkages between nearby agricultural microbiomes, multiple approaches (16S, 18S, and ITS) were used to inspect a broad coverage of niche microbiomes. Here we examined agricultural microbiome responses to 3 different nitrogen treatments (0, 150, and 300 kg/ha/yr) in soil and tracked linked responses in other neighbouring farm niches (rumen, faecal, white clover leaf, white clover root, rye grass leaf, and rye grass root). Nitrogen treatment had little impact on microbiome structure or composition across niches, but drastically reduced the microbiome network connectivity in soil. Networks of 16S microbiomes were the most sensitive to nitrogen treatment across amplicons, where ITS microbiome networks were the least responsive. Nitrogen enrichment in soil altered soil and the neighbouring microbiome networks, supporting our hypotheses that nitrogen treatment in soil altered microbiomes in soil and in nearby niches. This suggested that agricultural microbiomes across farm niches are ecologically interactive. Therefore, knock-on effects on neighbouring niches should be considered when management is applied to a single agricultural niche.

7.
Front Microbiol ; 9: 2378, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356700

RESUMO

Methane is a potent greenhouse gas, 25 times more efficient at trapping heat than carbon dioxide. Ruminant methane emissions contribute almost 30% to anthropogenic sources of global atmospheric methane levels and a reduction in methane emissions would significantly contribute to slowing global temperature rises. Here we demonstrate the use of a lytic enyzme, PeiR, from a methanogen virus that infects Methanobrevibacter ruminantium M1 as an effective agent inhibiting a range of rumen methanogen strains in pure culture. We determined the substrate specificity of soluble PeiR and demonstrated that the enzyme is capable of hydrolysing the pseudomurein cell walls of methanogens. Subsequently, peiR was fused to the polyhydroxyalkanoate (PHA) synthase gene phaC and displayed on the surface of PHA bionanoparticles (BNPs) expressed in Eschericia coli via one-step biosynthesis. These tailored BNPs were capable of lysing not only the original methanogen host strain, but a wide range of other rumen methanogen strains in vitro. Methane production was reduced by up to 97% for 5 days post-inoculation in the in vitro assay. We propose that tailored BNPs carrying anti-methanogen enzymes represent a new class of methane inhibitors. Tailored BNPs can be rapidly developed and may be able to modulate the methanogen community in vivo with the aim to lower ruminant methane emissions without impacting animal productivity.

8.
Stand Genomic Sci ; 11: 26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26981167

RESUMO

Acetogens are a specialized group of anaerobic bacteria able to produce acetate from CO2 and H2 via the Wood-Ljungdahl pathway. In some gut environments acetogens can compete with methanogens for H2, and as a result rumen acetogens are of interest in the development of microbial approaches for methane mitigation. The acetogen Eubacterium limosum SA11 was isolated from the rumen of a New Zealand sheep and its genome has been sequenced to examine its potential application in methane mitigation strategies, particularly in situations where hydrogenotrophic methanogens are inhibited resulting in increased H2 levels in the rumen. The 4.15 Mb chromosome of SA11 has an average G + C content of 47 %, and encodes 3805 protein-coding genes. There is a single prophage inserted in the chromosome, and several other gene clusters appear to have been acquired by horizontal transfer. These include genes for cell wall glycopolymers, a type VII secretion system, cell surface proteins and chemotaxis. SA11 is able to use a variety of organic substrates in addition to H2/CO2, with acetate and butyrate as the principal fermentation end-products, and genes involved in these metabolic pathways have been identified. An unusual feature is the presence of 39 genes encoding trimethylamine methyltransferase family proteins, more than any other bacterial genome. Overall, SA11 is a metabolically versatile organism, but its ability to grow on such a wide range of substrates suggests it may not be a suitable candidate to take the place of hydrogen-utilizing methanogens in the rumen.

9.
Stand Genomic Sci ; 10: 57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413197

RESUMO

Methanosarcina species are the most metabolically versatile of the methanogenic Archaea and can obtain energy for growth by producing methane via the hydrogenotrophic, acetoclastic or methylotrophic pathways. Methanosarcina barkeri CM1 was isolated from the rumen of a New Zealand Friesian cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. The 4.5 Mb chromosome has an average G + C content of 39 %, and encodes 3523 protein-coding genes, but has no plasmid or prophage sequences. The gene content is very similar to that of M. barkeri Fusaro which was isolated from freshwater sediment. CM1 has a full complement of genes for all three methanogenesis pathways, but its genome shows many differences from those of other sequenced rumen methanogens. Consequently strategies to mitigate ruminant methane need to include information on the different methanogens that occur in the rumen.

10.
Nutrients ; 6(10): 4178-90, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25314644

RESUMO

Inflammatory bowel disease (IBD) is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual's capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae) has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152) and interleukin-10 (IL-10, rs1800896) associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F) and increasing anti-inflammatory cytokine gene promoter activity (IL-10, -1082A). The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.


Assuntos
Curcumina/farmacologia , Células Epiteliais/efeitos dos fármacos , Inflamação/dietoterapia , Doenças Inflamatórias Intestinais/dietoterapia , Curcuma/química , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Doenças Inflamatórias Intestinais/genética , Interleucina-10/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Extratos Vegetais/química , Simportadores
11.
J Immunol ; 178(8): 5116-23, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17404294

RESUMO

To investigate the role of mannose-binding lectin-A (MBL-A) in protection against infectious disease, MBL-A(-/-)-deficient mice were generated. Using a well-characterized mouse model of human filarial nematode infection, nematode survival and protective immune responses were tested in vivo. Blood-borne Brugia malayi microfilariae survived for significantly longer time periods in MBL-A(-/-) than in wild-type (WT) mice. However, no differences in either splenic cytokine responses or induction of leukocytes in the blood were observed. A profound abrogation of Ag-specific IgM levels was measured in B. malayi-infected MBL-A(-/-) mice, and some IgG isotypes were higher than those observed in WT animals. To establish whether there was a defect in Ab responses per se in MBL-A(-/-) mice or the effect was specific to filarial infection, we immunized these mice with OVA or a carbohydrate-free protein. Significantly, Ag-specific IgM responses were defective to both of these Ags, and Ag-specific IgG responses were largely unaffected. Furthermore, in naive mice, total IgM levels did not differ between MBL-A(-/-) and WT mice. This article describes the first demonstration that MBL-A may function independently of MBL-C and suggests that MBL-A, like other C-type lectins and members of the complement cascade, is intimately involved in the priming of the humoral Ab response.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Brugia Malayi/imunologia , Filariose/imunologia , Imunoglobulina M/sangue , Lectina de Ligação a Manose/fisiologia , Animais , Complemento C3/fisiologia , Suscetibilidade a Doenças , Isotipos de Imunoglobulinas/sangue , Contagem de Leucócitos , Lectina de Ligação a Manose/deficiência , Camundongos , Camundongos Endogâmicos C57BL
12.
Biochem Biophys Res Commun ; 340(3): 984-94, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16410078

RESUMO

Angiogenesis is the development of blood capillaries from pre-existing vessels. Vascular endothelial growth factor (VEGF) is a key regulator of vessel growth and regression, and acts as an endothelial survival factor by protecting endothelial cells from apoptosis. Many genes involved in cell proliferation and apoptosis are regulated by the nuclear factor kappa B (NFkappaB) transcription factor family. This study aimed to address the hypothesis that VEGF-mediated survival effects on endothelium involve NFkappaB. Using an NFkappaB-luciferase reporter adenovirus, we observed activation of NFkappaB following VEGF treatment of human umbilical vein endothelial cells. This was confirmed using electrophoretic mobility shift assay and found to involve nuclear translocation of NFkappaB sub-unit p65. However, NFkappaB activation occurred without degradation of inhibitory IkappaB proteins (IkappaBalpha, IkappaBbeta, and IkappaBepsilon). Instead, tyrosine phosphorylation of IkappaBalpha was observed following VEGF treatment, suggesting NFkappaB activation was mediated by degradation-independent dissociation of IkappaBalpha from NFkappaB. Adenovirus-mediated over-expression of either native IkappaBalpha, or of IkappaBalpha in which tyrosine residue 42 was mutated to phenylalanine, inhibited induction of NFkappaB-dependent luciferase activity in response to VEGF. Furthermore, VEGF-induced upregulation of mRNA for the anti-apoptotic protein Bcl-2 and cell survival following serum withdrawal was reduced following IkappaBalpha over-expression. This study highlights that different molecular mechanisms of NFkappaB activation may be involved downstream of stimuli which activate the endothelial lining of blood vessels.


Assuntos
Células Endoteliais/citologia , NF-kappa B/metabolismo , NF-kappa B/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adenoviridae/metabolismo , Apoptose , Western Blotting , Sobrevivência Celular , Células Cultivadas , Endotélio Vascular/metabolismo , Humanos , Luciferases/metabolismo , Neovascularização Patológica , Fosforilação , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Tirosina/química , Veias Umbilicais/citologia , Veias Umbilicais/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA