Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7950): 80-86, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859581

RESUMO

The distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales1-14. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems15-18. We assessed more than 9.9 billion trees derived from more than 300,000 satellite images, covering semi-arid sub-Saharan Africa north of the Equator. We attributed wood, foliage and root carbon to every tree in the 0-1,000 mm year-1 rainfall zone by coupling field data19, machine learning20-22, satellite data and high-performance computing. Average carbon stocks of individual trees ranged from 0.54 Mg C ha-1 and 63 kg C tree-1 in the arid zone to 3.7 Mg C ha-1 and 98 kg tree-1 in the sub-humid zone. Overall, we estimated the total carbon for our study area to be 0.84 (±19.8%) Pg C. Comparisons with 14 previous TRENDY numerical simulation studies23 for our area found that the density and carbon stocks of scattered trees have been underestimated by three models and overestimated by 11 models, respectively. This benchmarking can help understand the carbon cycle and address concerns about land degradation24-29. We make available a linked database of wood mass, foliage mass, root mass and carbon stock of each tree for scientists, policymakers, dryland-restoration practitioners and farmers, who can use it to estimate farmland tree carbon stocks from tablets or laptops.


Assuntos
Carbono , Clima Desértico , Ecossistema , Árvores , Carbono/análise , Carbono/metabolismo , Árvores/anatomia & histologia , Árvores/química , Árvores/metabolismo , Dessecação , Imagens de Satélites , África Subsaariana , Aprendizado de Máquina , Madeira/análise , Raízes de Plantas , Agricultura , Recuperação e Remediação Ambiental , Bases de Dados Factuais , Biomassa , Computadores
2.
Nat Food ; 5(8): 661-666, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39138379

RESUMO

Food security policies often overlook the potential of trees to provide micronutrient-rich foods. Here, through causal mediation analysis, we show the positive effect of tree cover on micronutrient adequacy, explained by people sourcing food from on-farm trees. Detailed survey data (n = 460 households with repeated surveys) from Malawi were linked to high-resolution (3 m) tree-cover data to capture forest and non-forest trees. Our findings support integrating nutrition and landscape restoration policies.


Assuntos
Árvores , Malaui , Humanos , Abastecimento de Alimentos , Fazendas , Micronutrientes/análise , Dieta , Feminino , Masculino , Segurança Alimentar , Adulto
3.
PNAS Nexus ; 3(2): pgae067, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404357

RESUMO

Forests are attracting attention as a promising avenue to provide nutritious and "free" food without damaging the environment. Yet, we lack knowledge on the extent to which this holds in areas with sparse tree cover, such as in West Africa. This is largely due to the fact that existing methods are poorly designed to quantify tree cover in drylands. In this study, we estimate how various levels of tree cover across West Africa affect children's (aged 12-59 months) consumption of vitamin A-rich foods. We do so by combining detailed tree cover estimates based on PlanetScope imagery (3 m resolution) with Demographic Health Survey data from >15,000 households. We find that the probability of consuming vitamin A-rich foods increases from 0.45 to 0.53 with an increase in tree cover from the median value of 8.8 to 16.8% (which is the tree cover level at which the predicted probability of consuming vitamin A-rich foods is the highest). Moreover, we observe that the effects of tree cover vary across poverty levels and ecoregions. The poor are more likely than the non-poor to consume vitamin A-rich foods at low levels of tree cover in the lowland forest-savanna ecoregions, whereas the difference between poor and non-poor is less pronounced in the Sahel-Sudan. These results highlight the importance of trees and forests in sustainable food system transformation, even in areas with sparse tree cover.

4.
Nat Food ; 5(6): 513-523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741004

RESUMO

Greenhouse cultivation has been expanding rapidly in recent years, yet little knowledge exists on its global extent and expansion. Using commercial and freely available satellite data combined with artificial intelligence techniques, we present a global assessment of greenhouse cultivation coverage and map 1.3 million hectares of greenhouse infrastructures in 2019, a much larger extent than previously estimated. Our analysis includes both large (61%) and small-scale (39%) greenhouse infrastructures. Examining the temporal development of the 65 largest clusters (>1,500 ha), we show a recent upsurge in greenhouse cultivation in the Global South since the 2000s, including a dramatic increase in China, accounting for 60% of the global coverage. We emphasize the potential of greenhouse infrastructures to enhance food security but raise awareness of the uncertain environmental and social implications that may arise from this expansion. We further highlight the gap in spatio-temporal datasets for supporting future research agendas on this critical topic.


Assuntos
Agricultura , Agricultura/métodos , Imagens de Satélites , China , Produtos Agrícolas/crescimento & desenvolvimento , Abastecimento de Alimentos , Segurança Alimentar , Inteligência Artificial/tendências , Humanos
5.
Nat Ecol Evol ; 8(9): 1632-1640, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39054350

RESUMO

The baobab tree (Adansonia digitata L.) is an integral part of rural livelihoods throughout the African continent. However, the combined effects of climate change and increasing global demand for baobab products are currently exerting pressure on the sustainable utilization of these resources. Here we use sub-metre-resolution satellite imagery to identify the presence of nearly 2.8 million (underestimation bias 27.1%) baobab trees in the Sahel, a dryland region of 2.4 million km2. This achievement is considered an essential step towards an improved management and monitoring system of valuable woody species. Using Senegal as a case country, we find that 94% of rural buildings have at least one baobab tree in their immediate surroundings and that the abundance of baobabs is associated with a higher likelihood of people consuming a highly nutritious food group: dark green leafy vegetables. The generated database showcases the feasibility of mapping the location of single tree species at a sub-continental scale, providing vital information in times when deforestation and climate change cause the extinction of numerous tree species.


Assuntos
Adansonia , Imagens de Satélites , Conservação dos Recursos Naturais , Senegal , Mudança Climática , População Rural
6.
Sci Adv ; 9(37): eadh4097, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713489

RESUMO

Trees are an integral part in European landscapes, but only forest resources are systematically assessed by national inventories. The contribution of urban and agricultural trees to national-level carbon stocks remains largely unknown. Here we produced canopy cover, height and above-ground biomass maps from 3-meter resolution nanosatellite imagery across Europe. Our biomass estimates have a systematic bias of 7.6% (overestimation; R = 0.98) compared to national inventories of 30 countries, and our dataset is sufficiently highly resolved spatially to support the inclusion of tree biomass outside forests, which we quantify to 0.8 petagrams. Although this represents only 2% of the total tree biomass, large variations between countries are found (10% for UK) and trees in urban areas contribute substantially to national carbon stocks (8% for the Netherlands). The agreement with national inventory data, the scalability, and spatial details across landscapes, including trees outside forests, make our approach attractive for operational implementation to support national carbon stock inventory schemes.


Assuntos
Florestas , Árvores , Biomassa , Europa (Continente) , Carbono
7.
Nat Clim Chang ; 13(1): 91-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36684409

RESUMO

Trees sustain livelihoods and mitigate climate change but a predominance of trees outside forests and limited resources make it difficult for many tropical countries to conduct automated nation-wide inventories. Here, we propose an approach to map the carbon stock of each individual overstory tree at the national scale of Rwanda using aerial imagery from 2008 and deep learning. We show that 72% of the mapped trees are located in farmlands and savannas and 17% in plantations, accounting for 48.6% of the national aboveground carbon stocks. Natural forests cover 11% of the total tree count and 51.4% of the national carbon stocks, with an overall carbon stock uncertainty of 16.9%. The mapping of all trees allows partitioning to any landscapes classification and is urgently needed for effective planning and monitoring of restoration activities as well as for optimization of carbon sequestration, biodiversity and economic benefits of trees.

8.
Nat Commun ; 14(1): 2258, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130845

RESUMO

The consistent monitoring of trees both inside and outside of forests is key to sustainable land management. Current monitoring systems either ignore trees outside forests or are too expensive to be applied consistently across countries on a repeated basis. Here we use the PlanetScope nanosatellite constellation, which delivers global very high-resolution daily imagery, to map both forest and non-forest tree cover for continental Africa using images from a single year. Our prototype map of 2019 (RMSE = 9.57%, bias = -6.9%). demonstrates that a precise assessment of all tree-based ecosystems is possible at continental scale, and reveals that 29% of tree cover is found outside areas previously classified as tree cover in state-of-the-art maps, such as in croplands and grassland. Such accurate mapping of tree cover down to the level of individual trees and consistent among countries has the potential to redefine land use impacts in non-forest landscapes, move beyond the need for forest definitions, and build the basis for natural climate solutions and tree-related studies.


Assuntos
Ecossistema , Florestas , Clima , África
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA