RESUMO
Despite providing considerable benefits to society, dams and weirs threaten riverine ecosystems by disrupting movement and migration of aquatic animals and degrading riverine habitats. Whilst the ecological impacts of large dams are well studied, the ecological effects of low-head weirs that are periodically drowned out by high flows are less well-understood. Here we examine the effects of a low-head weir on fine- and broad-scale movements, habitat use, and breeding behaviour of three species of native freshwater fish in the Nymboida River in coastal eastern Australia. Acoustic telemetry revealed that eastern freshwater cod (Maccullochella ikei) and eel-tailed catfish (Tandanus tandanus) made few large-scale movements, but Australian bass (Percalates novemaculeata) upstream of the weir were significantly more mobile than those below the weir. Within the weir pool, all three species displayed distinctive patterns in fine-scale movement behaviour that were likely related the deeper lentic environment created by the weir. No individuals of any species crossed the weir during the study period. Tandanus tandanus nesting behaviour varied greatly above and below the weir, where individuals in the more lentic upstream environment nested in potentially sub-optimal habitats. Our results demonstrate the potential effects of low-head weirs on movement and behaviour of freshwater fishes.
Assuntos
Comportamento Animal/fisiologia , Ecossistema , Movimento/fisiologia , Perciformes/fisiologia , Rios , Animais , Austrália , Modelos Lineares , Telemetria , Temperatura , Fatores de TempoRESUMO
Physicochemical variability in estuarine systems plays an important role in estuarine processes and in the lifecycles of estuarine organisms. In particular, seasonality of freshwater inflow to estuaries may be important in various aspects of fish lifecycles. This study aimed to further understand these relationships by studying the movements of a top-level estuarine predator in response to physicochemical variability in a large, temperate south-east Australian estuary (Shoalhaven River). Mulloway (Argyrosomus japonicus, 47-89 cm total length) were surgically implanted with acoustic transmitters, and their movements and migrations monitored over two years via fixed-position VR2W acoustic receivers configured in a linear array along the length of the estuary. The study period included a high degree of abiotic variability, with multiple pulses (exponentially high flows over a short period of time) in fresh water to the estuary, as well as broader seasonal variation in flow, temperature and conductivity. The relative deviation of fish from their modal location in the estuary was affected primarily by changes in conductivity, and smaller fish (n = 4) tended to deviate much further downstream from their modal position in the estuary than larger fish (n = 8). High-flow events which coincided with warmer temperatures tended to drive mature fish down the estuary and potentially provided a spawning signal to stimulate aggregation of adults near the estuary mouth; however, this relationship requires further investigation. These findings indicate that pulse and press effects of freshwater inflow and associated physicochemical variability play a role in the movements of mulloway, and that seasonality of large freshwater flows may be important in spawning. The possible implications of river regulation and the extraction of freshwater for consumptive uses on estuarine fishes are discussed.