Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Dev Dyn ; 251(3): 536-550, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34494340

RESUMO

BACKGROUND: Tissue organoids derived from primary cells have high potential for studying organ development and diseases in numerous organs. They recreate the morphological structure and mimic the functions of given organ while being compact in size, easy to produce, and suitable for use in various experimental setups. RESULTS: In this study we established the number of cells that form mouse kidney rudiments at E11.5, and generated renal organoids of various sizes from the mouse primary cells of the metanephric mesenchyme (MM). We investigated the ability of renal organoids to undergo nephrogenesis upon Wnt/ ß-catenin pathway-mediated tubule induction with a GSK-3 inhibitor (BIO) or by initiation through the ureteric bud (UB). We found that 5000 cells of MM cells are necessary to successfully form renal organoids with well-structured nephrons as judged by fluorescent microscopy, transmission electron microscopy (TEM), and quantitative Polymerase Chain Reaction (qPCR). These mouse organoids also recapitulated renal secretion function in the proximal tubules. CONCLUSIONS: We show that a significant decrease of cells used to generate renal mouse organoids in a dissociation/re-aggregation assay, does not interfere with development, and goes toward 3Rs. This enables generation of more experimental samples with one mouse litter, limiting the number of animals used for studies.


Assuntos
Quinase 3 da Glicogênio Sintase , Organogênese , Animais , Rim , Mesoderma , Camundongos , Néfrons
2.
Cell Tissue Res ; 369(1): 171-183, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28429072

RESUMO

Organ transplantation is currently the best strategy for treating end stage renal disease (ESRD) but the numbers of donor kidneys available are not sufficient to meet the needs of the ever-increasing ESRD population. Therefore, developments in the field of tissue engineering are necessary to provide alternative treatments. Decellularization and three-dimensional (3D) bioprinting strategies may serve as attractive novel options. Since successful tissue engineering requires an in -depth understanding of organ development and regulatory pathways, we discuss signaling in renal development and the composition of the renal extracellular matrix before presenting progress in the decellularization and 3D bioprinting fields.


Assuntos
Rim , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos
3.
STAR Protoc ; 4(4): 102662, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37889758

RESUMO

CRISPR-Cas9 gene editing is an efficient technique to modify specific sites/regions of DNA. Delivery of the Cas9 by mRNA is particularly promising in pre-clinical genome editing applications for its transient, nonintegrating feature. However, the off-target of Cas9-gRNA still remains a concern and needs a specific monitor. Here, we present a revised protocol to edit fibroblasts by in vitro transcribed Cas9 mRNA and profile its off-target effect by the optimized GUIDE-seq method. This protocol can also be applied to other cell lines. For complete details on the use and execution of this protocol, please refer to Ganna Reint et al. (2021).1.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , RNA Mensageiro/genética , Edição de Genes/métodos , DNA/genética
4.
Cell Genom ; 3(9): 100387, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37719144

RESUMO

Cas12a CRISPR technology, unlike Cas9, allows for facile multiplexing of guide RNAs from a single transcript, simplifying combinatorial perturbations. While Cas12a has been implemented for multiplexed knockout genetic screens, it has yet to be optimized for CRISPR activation (CRISPRa) screens in human cells. Here, we develop a new Cas12a-based transactivation domain (TAD) recruitment system using the ALFA nanobody and demonstrate simultaneous activation of up to four genes. We screen a genome-wide library to identify modulators of growth and MEK inhibition, and we compare these results with those obtained with open reading frame (ORF) overexpression and Cas9-based CRISPRa. We find that the activity of multiplexed arrays is largely predictable from the best-performing guide and provide criteria for selecting active guides. We anticipate that these results will greatly accelerate the exploration of gene function and combinatorial phenotypes at scale.

5.
Elife ; 102021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34898428

RESUMO

Precision CRISPR gene editing relies on the cellular homology-directed DNA repair (HDR) to introduce custom DNA sequences to target sites. The HDR editing efficiency varies between cell types and genomic sites, and the sources of this variation are incompletely understood. Here, we have studied the effect of 450 DNA repair protein-Cas9 fusions on CRISPR genome editing outcomes. We find the majority of fusions to improve precision genome editing only modestly in a locus- and cell-type specific manner. We identify Cas9-POLD3 fusion that enhances editing by speeding up the initiation of DNA repair. We conclude that while DNA repair protein fusions to Cas9 can improve HDR CRISPR editing, most need to be optimized to the cell type and genomic site, highlighting the diversity of factors contributing to locus-specific genome editing outcomes.


Assuntos
Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Células Cultivadas/fisiologia , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Edição de Genes/métodos , Reparo do DNA/genética , Reparo do DNA/fisiologia , Humanos
6.
J Vis Exp ; (143)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30735173

RESUMO

We present a convenient method to form a bottom-up structural organelle model for the endoplasmic reticulum (ER). The model consists of highly dense lipidic nanotubes that are, in terms of morphology and dynamics, reminiscent of ER. The networks are derived from phospholipid double bilayer membrane patches adhering to a transparent Al2O3 substrate. The adhesion is mediated by Ca2+ in the ambient buffer. Subsequent depletion of Ca2+ by means of BAPTA/EDTA causes retraction of the membrane, resulting in spontaneous lipid nanotube network formation. The method only comprises phospholipids and microfabricated surfaces for simple formation of an ER model and does not require the addition of proteins or chemical energy (e.g., GTP or ATP). In contrast to the 3D morphology of the cellular endoplasmic reticulum, the model is two-dimensional (albeit the nanotube dimensions, geometry, structure, and dynamics are maintained). This unique in vitro ER model consists of only a few components, is easy to construct, and can be observed under a light microscope. The resulting structure can be further decorated for additional functionality, such as the addition of ER-associated proteins or particles to study transport phenomena among the tubes. The artificial networks described here are suitable structural models for the cellular ER, whose unique characteristic morphology has been shown to be related to its biological function, whereas details regarding formation of the tubular domain and rearrangements within are still not completely understood. We note that this method uses Al2O3 thin-film-coated microscopy coverslips, which are commercially available but require special orders. Therefore, it is advisable to have access to a microfabrication facility for preparation.


Assuntos
Retículo Endoplasmático/metabolismo , Lipídeos/química , Nanotubos/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA