Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Small ; : e2404167, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011971

RESUMO

Nucleic acids are important biomarkers in cancer and viral diseases. However, their ultralow concentration in biological/clinical samples makes direct target detection challenging, because it leads to slow hybridization kinetics with the probe and its insufficient signal-to-noise ratio. Therefore, RNA target detection is done by molecular (target) amplification, notably by RT-PCR, which is a tedious multistep method that includes nucleic acid extraction and reverse transcription. Here, a direct method based on ultrabright dye-loaded polymeric nanoparticles in a sandwich-like hybridization assay with magnetic beads is reported. The ultrabright DNA-functionalized nanoparticle, equivalent to ≈10 000 strongly emissive rhodamine dyes, is hybridized with the magnetic bead to the RNA target, providing the signal amplification for the detection. This concept (magneto-fluorescent sandwich) enables high-throughput detection of DNA and RNA sequences of varied lengths from 48 to 1362 nt with the limit of detection down to 0.3 fm using a plate reader (15 zeptomoles), among the best reported for optical sandwich assays. Moreover, it allows semi-quantitative detection of SARS-CoV-2 viral RNA directly in clinical samples without a dedicated RNA extraction step. The developed technology, combining ultrabright nanoparticles with magnetic beads, addresses fundamental challenges in RNA detection; it is expected to accelerate molecular diagnostics of diseases.

2.
Chem Soc Rev ; 52(14): 4525-4548, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37338018

RESUMO

Brightness is a fundamental property of fluorescent nanomaterials reflecting their capacity to absorb and emit light. In sensing materials, brightness is crucial for high-sensitivity (bio)molecular detection, while in optical bioimaging it ensures high spatial and temporal resolution. Fluorescent organic nanoparticles (NPs) are particularly attractive because of their superior brightness compared to organic dyes. With the ever-growing diversity of organic nanomaterials, it is important to establish universal principles for measuring and estimating their brightness. This tutorial review provides definitions of brightness and describes the major approaches to its analysis based on ensemble and single-particle techniques. We present the current chemical approaches to fight Aggregation-Caused Quenching (ACQ) of fluorophores, which is a major challenge in the design of bright organic nanomaterials. The main classes of fluorescent organic NPs are described, including conjugated polymer NPs, aggregation-induced emission NPs, and NPs based on neutral and ionic dyes. Their brightness and other properties are systematically compared. Some brightest examples of bulk solid-state emissive organic materials are also mentioned. Finally, we analyse the importance of brightness and other particle properties in biological applications, such as bioimaging and biosensing. This tutorial will provide guidelines for chemists on the design of fluorescent organic NPs with improved performance and help them to estimate and compare the brightness of new nanomaterials with literature reports. Moreover, it will help biologists to select appropriate materials for sensing and imaging applications.

3.
Langmuir ; 39(46): 16532-16542, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37955543

RESUMO

Polymer nanoparticles (NPs) loaded with drugs and contrast agents have become key tools in the advancement of nanomedicine, requiring robust technologies for their synthesis. Nanoprecipitation is a particularly interesting technique for the assembly of loaded polymer NPs, which is well-known to proceed under kinetic control, with a strong influence of the assembly conditions. On the other hand, the nature of the used polymer also influences the outcome of nanoprecipitation. Here, we investigated systematically the relative effects of mixing of the organic and aqueous phases and polymer chemistry on the formation of polymer nanocarriers. For this, two mixing schemes, manual mixing and microfluidic mixing using an impact-jet micromixer, were first evaluated, showing mixing times of several tens of milliseconds and a few milliseconds, respectively. Copolymers of ethyl methacrylate with charged and hydrophilic groups and different polyesters (poly(d-l-lactide-co-glycolide) and poly(lactic acid)) were combined with a fluorescent dye salt and tested for particle assembly using these "slow" and "fast" mixing methods. Our results showed that in the case of the most hydrophobic polymers, the speed of mixing had no significant influence on the size and loading of the formed NPs. In contrast, in the case of less hydrophobic polymers, faster mixing led to smaller NPs with better encapsulation. The switch between mixing and polymer-controlled assembly was directly correlated to the solubility limit of the polymers in acetonitrile-water mixtures, with a critical point for solubility limits between 15 and 20 vol % of water. Our results provide simple guidelines on how to evaluate the possible influence of polymer chemistry and mixing on the formation of loaded NPs, opening the way to fine-tune their properties and optimize their large-scale production.

4.
Langmuir ; 38(26): 7945-7955, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35731957

RESUMO

Nanoprecipitation is a facile and efficient approach to the assembly of loaded polymer nanoparticles (NPs) for applications in bioimaging and targeted drug delivery. Their successful use in clinics requires reproducible and scalable synthesis, for which microfluidics appears as an attractive technique. However, in the case of nanoprecipitation, particle formation depends strongly on mixing. Here, we compare 5 different types of microfluidic mixers with respect to the formation and properties of poly(d-l-lactide-co-glycolide) (PLGA) and poly(methyl methacrylate) NPs loaded with a fluorescent dye salt: a cross-shaped mixer, a multilamination mixer, a split and recombine mixer, two herringbone mixers, and two impact jet mixers. Size and fluorescence properties of the NPs obtained with these mixers are evaluated. All mixers, except the cross-shaped one, yield NPs at least as small and fluorescent as those obtained manually. Notably in the case of impact jet mixers operated at high flow speeds, the size of the NPs could be strongly reduced from >50 nm down to <20 nm. Surprisingly, the fluorescence quantum yield of NPs obtained with these mixers also depends strongly on the flow speed, increasing, in the case of PLGA, from 30 to >70%. These results show the importance of precisely controlling the assembly conditions for loaded polymer NPs. The present work further provides guidance for choosing the optimal microfluidic setup for production of nanomaterials for biomedical applications.


Assuntos
Nanopartículas , Polímeros , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes , Microfluídica/métodos , Tamanho da Partícula
5.
Nanomedicine ; 40: 102511, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915181

RESUMO

The potential of poly(lactic-co-glycolic acid) (PLGA) to design nanoparticles (NPs) and target the central nervous system remains to be exploited. In the current study we designed fluorescent 70-nm PLGA NPs, loaded with bulky fluorophores, thereby making them significantly brighter than quantum dots in single-particle fluorescence measurements. The high brightness of NPs enabled their visualization by intravital real-time 2-photon microscopy. Subsequently, we found that PLGA NPs coated with pluronic F-68 circulated in the blood substantially longer than uncoated NPs and were taken up by cerebro-vascular endothelial cells. Additionally, confocal microscopy revealed that coated PLGA NPs were present in late endothelial endosomes of cerebral vessels within 1 h after systemic injection and were more readily taken up by endothelial cells in peripheral organs. The combination of ultra-bright NPs and in vivo imaging may thus represent a promising approach to reduce the gap between development and clinical application of nanoparticle-based drug carriers.


Assuntos
Nanopartículas , Poloxâmero , Portadores de Fármacos , Células Endoteliais , Glicóis , Microscopia , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
6.
Chemistry ; 27(50): 12877-12883, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34164869

RESUMO

Bulky hydrophobic counterions (weakly coordinating anions) can insulate ionic dyes against aggregation-caused quenching (ACQ) and enable preparation of highly fluorescent dye-loaded nanoparticles (NPs) for bioimaging, biosensing and light harvesting. Here, we introduce a family of hydrophobic anions based on fluorinated C-acyl barbiturates with delocalized negative charge and bulky non-polar groups. Similarly to fluorinated tetraphenylborates, these barbiturates prevent ACQ of cationic dye alkyl rhodamine B inside polymer NPs made of biodegradable poly(lactic-co-glycolic acid) (PLGA). Their efficiency to prevent ACQ increases for analogues with higher acidity and bulkiness. Their structure controls dye-dye communication, yielding bright NPs with on/off switching or stable emission. They enhance dye encapsulation inside NPs, allowing intracellular imaging without dye leakage. Compared to fluorinated tetraphenylborates known as cytotoxic transmembrane ion transporters, the barbiturates display a significantly lower cytotoxicity. These chemically available and versatile barbiturate derivatives are promising counterion scaffolds for preparation of bright non-toxic fluorescent nanomaterials.


Assuntos
Nanopartículas , Barbitúricos , Corantes Fluorescentes , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/toxicidade , Polímeros/toxicidade
7.
Angew Chem Int Ed Engl ; 59(17): 6811-6818, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31943649

RESUMO

Controlling the emission of bright luminescent nanoparticles by a single molecular recognition event remains a challenge in the design of ultrasensitive probes for biomolecules. Herein, we developed 20-nm light-harvesting nanoantenna particles, built of a tailor-made hydrophobic charged polymer poly(ethyl methacrylate-co-methacrylic acid), encapsulating circa 1000 strongly coupled and highly emissive rhodamine dyes with their bulky counterion. Being 87-fold brighter than quantum dots QDots 605 in single-particle microscopy (with 550-nm excitation), these DNA-functionalized nanoparticles exhibit over 50 % total FRET efficiency to a single hybridized FRET acceptor, a highly photostable dye (ATTO665), leading to circa 250-fold signal amplification. The obtained FRET nanoprobes enable single-molecule detection of short DNA and RNA sequences, encoding a cancer marker (survivin), and imaging single hybridization events by an epi-fluorescence microscope with ultralow excitation irradiance close to that of ambient sunlight.

8.
Langmuir ; 35(21): 7009-7017, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31081637

RESUMO

Nanoprecipitation is a straightforward yet powerful technique to synthesize polymer nanoparticles loaded with various biologically active compounds or contrast agents. Particle formation in this approach is kinetically controlled, and various assembly parameters have been used to control the size distribution and properties of the formed nanoparticles. Here, the influence of the nature of the polymer on the formation of nanoparticles in nanoprecipitation is studied systematically by varying its hydrophobicity and charge over a broad range. For this, methacrylate copolymers with different types and fractions of hydrophobic, hydrophilic, and charged side groups are synthesized. Nanoprecipitation of these polymers shows that particle size increases with increasing global hydrophobicity of the polymers. At the same time, both hydrophilic and charged groups reduce particle size. In this way, we achieve control over particle size from ∼10 to 200 nm. Furthermore, the effect of the polymer nature on the photophysical properties of nanoparticles loaded with a fluorescent dye, a rhodamine B derivative with a bulky hydrophobic counterion (fluorinated tetraphenylborate), is studied. It is found that the hydrophobic/hydrophilic balance of the polymer modulates to a large extent the spectral properties and fluorescence quantum yield of the dye encapsulated at high concentration, which reflects changes in the dye aggregation within the polymer matrix. Thus, we show how polymer chemistry can tune kinetically controlled formation of nanoparticles and encapsulation of the load. The concepts introduced here should be valuable tools for the design of nanoparticles for imaging and drug-delivery applications.

9.
Small ; 13(38)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28791769

RESUMO

Fluorescent polymer nanoparticles for long-term labeling and tracking of living cells with any desired color code are developed. They are built from biodegradable poly(lactic-co-glycolic acid) polymer loaded with cyanine dyes (DiO, DiI, and DiD) with the help of bulky fluorinated counterions, which minimize aggregation-caused quenching. At the single particle level, these particles are ≈20-fold brighter than quantum dots of similar color. Due to their identical 40 nm size and surface properties, these nanoparticles are endocytosed equally well by living cells. Mixing nanoparticles of three colors in different proportions generates a homogeneous RGB (red, green, and blue) barcode in cells, which is transmitted through many cell generations. Cell barcoding is validated on 7 cell lines (HeLa, KB, embryonic kidney (293T), Chinese hamster ovary, rat basophilic leucemia, U97, and D2A1), 13 color codes, and it enables simultaneous tracking of co-cultured barcoded cell populations for >2 weeks. It is also applied to studying competition among drug-treated cell populations. This technology enabled six-color imaging in vivo for (1) tracking xenografted cancer cells and (2) monitoring morphogenesis after microinjection in zebrafish embryos. In addition to a robust method of multicolor cell labeling and tracking, this work suggests that multiple functions can be co-localized inside cells by combining structurally close nanoparticles carrying different functions.


Assuntos
Nanopartículas/química , Polímeros/química , Animais , Carbocianinas/química , Sobrevivência Celular , Rastreamento de Células , Cor , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Fluorescência , Células HeLa , Humanos , Camundongos , Nanopartículas/ultraestrutura , Peixe-Zebra/embriologia
10.
Small ; 12(15): 1968-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26901678

RESUMO

Speed, resolution and sensitivity of today's fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many-fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye-loaded NPs) have emerged recently as an attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye-loaded polymer NPs by emulsion polymerization and assembly of pre-formed polymers. Superior brightness requires strong dye loading without aggregation-caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ≈10-fold for a comparable size, and have started reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking, as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye-loaded NPs for in vitro and in vivo imaging are reviewed.


Assuntos
Corantes Fluorescentes/química , Imagem Molecular/métodos , Nanopartículas/química , Polímeros/química , Corantes Fluorescentes/síntese química , Polímeros/síntese química
11.
Mol Pharm ; 13(2): 391-403, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26618861

RESUMO

Curcumin, a neuroprotective agent with promising therapeutic approach has poor brain bioavailability. Herein, we demonstrate that curcumin-encapsulated poly(lactide-co-glycolide) (PLGA) 50:50 nanoparticles (NPs-Cur 50:50) are able to prevent the phosphorylation of Akt and Tau proteins in SK-N-SH cells induced by H2O2 and display higher anti-inflammatory and antioxidant activities than free curcumin. PLGA can display various physicochemical and degradation characteristics for controlled drug release applications according to the matrix used. We demonstrate that the release of curcumin entrapped into a PLGA 50:50 matrix (NPs-Cur 50:50) is faster than into PLGA 65:35. We have studied the effects of the PLGA matrix on the expression of some key antioxidant- and neuroprotective-related genes such as APOE, APOJ, TRX, GLRX, and REST. NPs-Cur induced the elevation of GLRX and TRX while decreasing APOJ mRNA levels and had no effect on APOE and REST expressions. In the presence of H2O2, both NPs-Cur matrices are more efficient than free curcumin to prevent the induction of these genes. Higher uptake was found with NPs-Cur 50:50 than NPs-Cur 65:35 or free curcumin. By using PLGA nanoparticles loaded with the fluorescent dye Lumogen Red, we demonstrated that PLGA nanoparticles are indeed taken up by neuronal cells. These data highlight the importance of polymer composition in the therapeutic properties of the nanodrug delivery systems. Our study demonstrated that NPs-Cur enhance the action of curcumin on several pathways implicated in the pathophysiology of Alzheimer's disease (AD). Overall, these results suggest that PLGA nanoparticles are a promising strategy for the brain delivery of drugs for the treatment of AD.


Assuntos
Curcumina/farmacologia , Nanopartículas/administração & dosagem , Neuroblastoma/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Poliglactina 910/química , Polímeros/química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Perfilação da Expressão Gênica , Humanos , Fator 2 Relacionado a NF-E2/genética , Nanopartículas/química , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/citologia , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais Cultivadas
12.
Angew Chem Int Ed Engl ; 55(51): 15884-15888, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27862803

RESUMO

The key challenge in the field of fluorescent nanoparticles (NPs) for biological applications is to achieve superior brightness for sizes equivalent to single proteins (3-7 nm). We propose a concept of shell-cross-linked fluorescent micelles, in which PEGylated cyanine 3 and 5 bis-azides form a covalently attached corona on micelles of amphiphilic calixarene bearing four alkyne groups. The fluorescence quantum yield of the obtained monodisperse NPs, with a size of 7 nm, is a function of viscosity and reached up to 15 % in glycerol. In the on-state they are circa 2-fold brighter than quantum dots (QD-585), which makes them the smallest PEGylated organic NPs of this high brightness. FRET between cyanine 3 and 5 cross-linkers at the surface of NPs suggests their integrity in physiological media, organic solvents, and living cells, in which the NPs rapidly internalize, showing excellent imaging contrast. Calixarene micelles with a cyanine corona constitute a new platform for the development of protein-sized ultrabright fluorescent NPs.


Assuntos
Calixarenos/química , Carbocianinas/química , Corantes Fluorescentes/química , Micelas , Nanopartículas/química , Azidas/química , Química Click , Reagentes de Ligações Cruzadas/química , Células HeLa , Humanos , Nanopartículas/ultraestrutura , Imagem Óptica/métodos , Tamanho da Partícula , Polietilenoglicóis/química , Proteínas/química
13.
Adv Sci (Weinh) ; 11(24): e2309267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639398

RESUMO

Single-molecule localization microscopy has proved promising to unravel the dynamics and molecular architecture of thin biological samples down to nanoscales. For applications in complex, thick biological tissues shifting single-particle emission wavelengths to the shortwave infrared (SWIR also called NIR II) region between 900 to 2100 nm, where biological tissues are more transparent is key. To date, mainly single-walled carbon nanotubes (SWCNTs) enable such applications, but they are inherently 1D objects. Here, 0D ultra-small luminescent gold nanoclusters (AuNCs, <3 nm) and ≈25 nm AuNC-loaded-polymeric particles that can be detected at the single-particle level in the SWIR are presented. Thanks to high brightness and excellent photostability, it is shown that the dynamics of the spherical polymeric particles can be followed at the single-particle level in solution at video rates for minutes. We compared single particle tracking of AuNC-loaded-polymeric particles with that of SWCNT diffusing in agarose gels demonstrating the specificity and complementarity of diffusion properties of these SWIR-emitting nano-objects when exploring a complex environment. This extends the library of photostable SWIR emitting nanomaterials to 0D nano-objects of variable size for single-molecule localization microscopy in the second biological window, opening unprecedented possibilities for mapping the structure and dynamics of complex biological systems.

14.
Small Methods ; 7(4): e2201452, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808832

RESUMO

The performance of fluorescence immunostaining is physically limited by the brightness of organic dyes, whereas fluorescence labeling with multiple dyes per antibody can lead to dye self-quenching. The present work reports a methodology of antibody labeling by biotinylated zwitterionic dye-loaded polymeric nanoparticles (NPs). A rationally designed hydrophobic polymer, poly(ethyl methacrylate) bearing charged, zwitterionic and biotin groups (PEMA-ZI-biotin), enables preparation of small (14 nm) and bright fluorescent biotinylated NPs loaded with large quantities of cationic rhodamine dye with bulky hydrophobic counterion (fluorinated tetraphenylborate). The biotin exposure at the particle surface is confirmed by Förster resonance energy transfer with dye-streptavidin conjugate. Single-particle microscopy validates specific binding to biotinylated surfaces, with particle brightness 21-fold higher than quantum dot-585 (QD-585) at 550 nm excitation. The nanoimmunostaining method, which couples biotinylated antibody (cetuximab) with bright biotinylated zwitterionic NPs through streptavidin, significantly improves fluorescence imaging of target epidermal growth factor receptors (EGFR) on the cell surface compared to a dye-based labeling. Importantly, cetuximab labeled with PEMA-ZI-biotin NPs can differentiate cells with distinct expression levels of EGFR cancer marker. The developed nanoprobes can greatly amplify the signal from labeled antibodies, and thus become a useful tool in the high-sensitivity detection of disease biomarkers.


Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/química , Biotina/química , Biotina/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo , Cetuximab , Nanopartículas/química , Polímeros/química
15.
Adv Mater ; 35(29): e2301402, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37073109

RESUMO

Förster resonance energy transfer (FRET) is essential in optical materials for light-harvesting, photovoltaics, and biosensing, but its operating range is fundamentally limited by the Förster radius of ≈5 nm. In this work, FRET between fluorescent organic nanoparticles (NPs) is studied in order to break this limit. The donor and acceptor NPs are built from charged hydrophobic polymers loaded with cationic dyes and bulky hydrophobic counterions. Their surface is functionalized with DNA in order to control surface-to-surface distance. It is found that the FRET efficiency does not follow the canonic Förster law, reaching 0.70 and 0.45 values for NP-NP distances of 15 and 20 nm, respectively. This corresponds to the FRET efficiency decay as power four of the surface-to-surface NP-NP distance. Based on this long-distance FRET, a DNA nanoprobe is developed, where a target DNA fragment, encoding the cancer marker survivin, bringing together donor and acceptor NPs at ≈15 nm distance. In this nanoprobe, a single-molecular recognition results in unprecedented color switch for >5000 dyes, yielding a simple and fast assay with 18 attomoles limit of detection. Breaking the Förster distance limit for ultrabright NPs opens the route to advanced optical nanomaterials for amplified FRET-based biosensing.


Assuntos
Nanopartículas , Transferência Ressonante de Energia de Fluorescência , Nanopartículas/química , DNA/química , Corantes Fluorescentes/química
16.
Int J Pharm ; 630: 122439, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36503846

RESUMO

Polymeric nanoparticles (NPs) are extremely promising for theranostic applications. However, their interest depends largely on their interactions with immune system, including the capacity to activate inflammation after their capture by macrophages. In the present study, we generated monodisperse poly(ethyl methacrylate) (PEMA) NPs loaded with hydrophobic photoluminescent gold nanoclusters (Au NCs) emitting in the NIR-II optical windows and studied their interaction in vitro with J774.1A macrophages. PEMA NPs showed an efficient time and dose dependent cellular uptake with up to 70 % of macrophages labelled in 24 h without detectable cell death. Interestingly, PEMA and Au-PEMA NPs induced an anti-inflammatory response and a strong down-regulation of nitric oxide level on lipopolysacharides (LPS) activated macrophages, but without influence on the levels of reactive oxygen species (ROS). These polymeric NPs may thus present a potential interest for the treatment of inflammatory diseases.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/química , Nanopartículas/química , Polímeros , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/química
17.
J Am Chem Soc ; 134(1): 83-6, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22188330

RESUMO

Cell adhesion processes take place through mechanotransduction mechanisms where stretching of proteins results in biological responses. In this work, we present the first cyto-mechanoresponsive surface that mimics such behavior by becoming cell-adhesive through exhibition of arginine-glycine-aspartic acid (RGD) adhesion peptides under stretching. This mechanoresponsive surface is based on polyelectrolyte multilayer films built on a silicone sheet and where RGD-grafted polyelectrolytes are embedded under antifouling phosphorylcholine-grafted polyelectrolytes. The stretching of this film induces an increase in fibroblast cell viability and adhesion.


Assuntos
Mecanotransdução Celular , Polímeros/química , Biomimética , Adesão Celular , Eletrólitos/química , Fibroblastos/citologia , Oligopeptídeos/química , Propriedades de Superfície
18.
J Colloid Interface Sci ; 607(Pt 2): 1786-1795, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600342

RESUMO

HYPOTHESIS: Polymer nanoparticles (NPs) have a very high potential for applications notably in the biomedical field. However, synthetic polymer NPs cannot yet concurrence the functionalities of proteins, their natural counterparts, notably in terms of size, control over internal structure and interactions with biological environments. We hypothesize that kinetic trapping of polymers bearing oppositely charged groups in NPs could bring a new level of control and allow mimicking the surfaces of proteins. EXPERIMENTS: Here, the assembly of mixed-charge polymer NPs through nanoprecipitation of mixtures of oppositely charged polymers is studied. Two series of copolymers made of ethyl methacrylate and 1 to 25 mol% of either methacrylic acid or a trimethylammonium bearing methacrylate are synthesized. These carboxylic acid or trimethylammonium bearing polymers are then mixed in different ratios and nanoprecipitated. The influence of the charge fraction, mixing ratio of the polymers, and precipitation conditions on NP size and surface charge is studied. FINDINGS: Using this approach, NPs of less than 25 nm with tunable surface charge from +40 mV to -40 mV are assembled. The resulting NPs are sensitive to pH and certain NP formulations have an isoelectric point allowing repeated charge reversal. Encapsulation of fluorescent dyes yields very bright fluorescent NPs, whose interactions with cells are studied through fluorescence microscopy. The obtained results show the potential of nanoprecipitation of oppositely charged polymers for the design of NPs with precisely tuned surface properties.


Assuntos
Nanopartículas , Polímeros , Corantes Fluorescentes , Microscopia de Fluorescência , Tamanho da Partícula , Propriedades de Superfície
19.
ACS Nano ; 16(1): 1381-1394, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34928570

RESUMO

Detection and imaging of RNA at the single-cell level is of utmost importance for fundamental research and clinical diagnostics. Current techniques of RNA analysis, including fluorescence in situ hybridization (FISH), are long, complex, and expensive. Here, we report a methodology of amplified FISH (AmpliFISH) that enables simpler and faster RNA imaging using small and ultrabright dye-loaded polymeric nanoparticles (NPs) functionalized with DNA. We found that the small size of NPs (below 20 nm) was essential for their access to the intracellular mRNA targets in fixed permeabilized cells. Moreover, proper selection of the polymer matrix of DNA-NPs minimized nonspecific intracellular interactions. Optimized DNA-NPs enabled sequence-specific imaging of different mRNA targets (survivin, actin, and polyA tails), using a simple 1 h staining protocol. Encapsulation of cyanine and rhodamine dyes with bulky counterions yielded green-, red-, and far-red-emitting NPs that were 2-100-fold brighter than corresponding quantum dots. These NPs enabled multiplexed detection of three mRNA targets simultaneously, showing distinctive mRNA expression profiles in three cancer cell lines. Image analysis confirmed the single-particle nature of the intracellular signal, suggesting single-molecule sensitivity of the method. AmpliFISH was found to be semiquantitative, correlating with RT-qPCR. In comparison with the commercial locked nucleic acid (LNA)-based FISH technique, AmpliFISH provides 8-200-fold stronger signal (dependent on the NP color) and requires only three steps vs ∼20 steps together with a much shorter time. Thus, combination of bright fluorescent polymeric NPs with FISH yields a fast and sensitive single-cell transcriptomic analysis method for RNA research and clinical diagnostics.


Assuntos
Corantes Fluorescentes , Nanopartículas , Hibridização in Situ Fluorescente , Polímeros , DNA , RNA , RNA Mensageiro/genética
20.
Adv Healthc Mater ; 11(19): e2200195, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36057996

RESUMO

Osteosarcoma (OS) is the most common primary bone cancer, where the overall 5-year surviving rate is below 20% in resistant forms. Accelerating cures for those poor outcome patients remains a challenge. Nevertheless, several studies of agents targeting abnormal cancerous pathways have yielded disappointing results when translated into clinic because of the lack of accurate OS preclinical modeling. So, any effort to design preclinical drug testing may consider all inter-, intra-, and extra-tumoral heterogeneities throughout models mimicking extracellular and immune microenvironment. Therefore, the bioengineering of patient-derived models reproducing the OS heterogeneity, the interaction with tumor-associated macrophages (TAMs), and the modulation of oxygen concentrations additionally to recreation of bone scaffold is proposed here. Eight 2D preclinical models mimicking several OS clinical situations and their TAMs in hypoxic conditions are developed first and, subsequently, the paired 3D models faithfully preserving histological and biological characteristics are generated. It is possible to shape reproducibly M2-like macrophages cultured with all OS patient-derived cell lines in both dimensions. The final 3D models pooling all heterogeneity features are providing accurate proliferation and migration data to understand the mechanisms involved in OS and immune cells/biomatrix interactions and sustained such that engineered 3D preclinical systems will improve personalized medicine.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/patologia , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Osteossarcoma/metabolismo , Oxigênio , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA