Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(38): e2301456120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695907

RESUMO

The Mott metal-insulator transition represents one of the most fundamental phenomena in condensed matter physics. Yet, basic tenets of the canonical Brinkman-Rice picture of Mott localization remain to be tested experimentally by quantum oscillation measurements that directly probe the quasiparticle Fermi surface and effective mass. By extending this technique to high pressure, we have examined the metallic state on the threshold of Mott localization in clean, undoped crystals of NiS2. We find that i) on approaching Mott localization, the quasiparticle mass is strongly enhanced, whereas the Fermi surface remains essentially unchanged; ii) the quasiparticle mass closely follows the divergent form predicted theoretically, establishing charge carrier slowdown as the driver for the metal-insulator transition; iii) this mass divergence is truncated by the metal-insulator transition, placing the Mott critical point inside the insulating section of the phase diagram. The inaccessibility of the Mott critical point in NiS2 parallels findings at the threshold of ferromagnetism in clean metallic systems, in which criticality at low temperature is almost universally interrupted by first-order transitions or novel emergent phases such as incommensurate magnetic order or unconventional superconductivity.

2.
Phys Rev Lett ; 127(24): 246402, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951778

RESUMO

In the vicinity of a quantum critical point, quenched disorder can lead to a quantum Griffiths phase, accompanied by an exotic power-law scaling with a continuously varying dynamical exponent that diverges in the zero-temperature limit. Here, we investigate a nematic quantum critical point in the iron-based superconductor FeSe_{0.89}S_{0.11} using applied hydrostatic pressure. We report an unusual crossing of the magnetoresistivity isotherms in the nonsuperconducting normal state that features a continuously varying dynamical exponent over a large temperature range. We interpret our results in terms of a quantum Griffiths phase caused by nematic islands that result from the local distribution of Se and S atoms. At low temperatures, the Griffiths phase is masked by the emergence of a Fermi liquid phase due to a strong nematoelastic coupling and a Lifshitz transition that changes the topology of the Fermi surface.

3.
Phys Rev Lett ; 116(12): 127001, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058094

RESUMO

The iron-based intermetallic YFe_{2}Ge_{2} stands out among transition metal compounds for its high Sommerfeld coefficient of the order of 100 mJ/(mol K^{2}), which signals strong electronic correlations. A new generation of high quality samples of YFe_{2}Ge_{2} show superconducting transition anomalies below 1.8 K in thermodynamic, magnetic, and transport measurements, establishing that superconductivity is intrinsic in this layered iron compound outside the known superconducting iron pnictide or chalcogenide families. The Fermi surface geometry of YFe_{2}Ge_{2} resembles that of KFe_{2}As_{2} in the high pressure collapsed tetragonal phase, in which superconductivity at temperatures as high as 10 K has recently been reported, suggesting an underlying connection between the two systems.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 1): 051910, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22181447

RESUMO

Inspired by the topological organization of the circular Escherichia coli chromosome, which is compacted by separate domains, we study a polymer architecture consisting of a central ring to which either looped or linear side chains are grafted. A shape change from a spherical to a toroidal organization takes place as soon as the inner ring becomes large enough for the attached arms to fit within its circumference. Building up a torus, the system flattens, depending on the effective bending rigidity of the chain induced by entropic repulsion of the attached loops and, to a lesser extent, linear arms. Our results suggest that the natural formation of a toroidal structure with a decreased amount of writhe induced by a specific underlying topology could be one driving force, among others, that nature exploits to ensure proper packaging of the genetic material within a rod-shaped, bacterial envelope.


Assuntos
Materiais Biomiméticos/química , Conformação Molecular , Polímeros/química , Cromossomos Bacterianos/química , Escherichia coli , Modelos Moleculares , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA