Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Bioinformatics ; 10 Suppl 14: S3, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19900299

RESUMO

BACKGROUND: Increasing the quantity and quality of data is a key goal of biodiversity informatics, leading to increased fitness for use in scientific research and beyond. This goal is impeded by a legacy of geographic locality descriptions associated with biodiversity records that are often heterogeneous and not in a map-ready format. The biodiversity informatics community has developed best practices and tools that provide the means to do retrospective georeferencing (e.g., the BioGeomancer toolkit), a process that converts heterogeneous descriptions into geographic coordinates and a measurement of spatial uncertainty. Even with these methods and tools, data publishers are faced with the immensely time-consuming task of vetting georeferenced localities. Furthermore, it is likely that overlap in georeferencing effort is occurring across data publishers. Solutions are needed that help publishers more effectively georeference their records, verify their quality, and eliminate the duplication of effort across publishers. RESULTS: We have developed a tool called BioGeoBIF, which incorporates the high throughput and standardized georeferencing methods of BioGeomancer into a beginning-to-end workflow. Custodians who publish their data to the Global Biodiversity Information Facility (GBIF) can use this system to improve the quantity and quality of their georeferences. BioGeoBIF harvests records directly from the publishers' access points, georeferences the records using the BioGeomancer web-service, and makes results available to data managers for inclusion at the source. Using a web-based, password-protected, group management system for each data publisher, we leave data ownership, management, and vetting responsibilities with the managers and collaborators of each data set. We also minimize the georeferencing task, by combining and storing unique textual localities from all registered data access points, and dynamically linking that information to the password protected record information for each publisher. CONCLUSION: We have developed one of the first examples of services that can help create higher quality data for publishers mediated through the Global Biodiversity Information Facility and its data portal. This service is one step towards solving many problems of data quality in the growing field of biodiversity informatics. We envision future improvements to our service that include faster results returns and inclusion of more georeferencing engines.


Assuntos
Biodiversidade , Biologia Computacional/métodos , Bases de Dados Factuais , Humanos
2.
Bioinformatics ; 23(11): 1434-6, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17392332

RESUMO

UNLABELLED: Web content syndication through standard formats such as RSS and ATOM has become an increasingly popular mechanism for publishers, news sources and blogs to disseminate regularly updated content. These standardized syndication formats deliver content directly to the subscriber, allowing them to locally aggregate content from a variety of sources instead of having to find the information on multiple websites. The uBioRSS application is a 'taxonomically intelligent' service customized for the biological sciences. It aggregates syndicated content from academic publishers and science news feeds, and then uses a taxonomic Named Entity Recognition algorithm to identify and index taxonomic names within those data streams. The resulting name index is cross-referenced to current global taxonomic datasets to provide context for browsing the publications by taxonomic group. This process, called taxonomic indexing, draws upon services developed specifically for biological sciences, collectively referred to as 'taxonomic intelligence'. Such value-added enhancements can provide biologists with accelerated and improved access to current biological content. AVAILABILITY: http://names.ubio.org/rss/


Assuntos
Indexação e Redação de Resumos/métodos , Classificação/métodos , Sistemas de Gerenciamento de Base de Dados , Armazenamento e Recuperação da Informação/métodos , Internet , Processamento de Linguagem Natural , Publicações Periódicas como Assunto , Terminologia como Assunto , Vocabulário Controlado
3.
Sci Total Environ ; 640-641: 1148-1156, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021280

RESUMO

Salt marshes are important coastal environments that provide key ecological services. As sea level rise has accelerated globally, concerns about the ability of salt marshes to survive submergence are increasing. Previous estimates of likely survival of salt marshes were based on ratios of sea level rise to marsh platform accretion. Here we took advantage of an unusual, long-term (1979-2015), spatially detailed comparison of changes in a representative New England salt marsh to provide an empirical estimate of habitat losses based on actual measurements. We show prominent changes in habitat mosaic within the marsh, consistent and coincident with increased submergence and coastal erosion. Model results suggest that at current rates of sea level rise, marsh platform accretion, habitat loss, and with the limitation of the widespread "coastal squeeze", the entire ecosystem might disappear by the beginning of the next century, a fate that might be likely for many salt marshes elsewhere. Meta-analysis of available data suggests that 40 to 95% of the world's salt marshes will be submerged, depending on whether sea level rise remains at current or reaches anticipated rates for the end of this century.

4.
Biol Bull ; 210(1): 18-24, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16501061

RESUMO

Given the current trends, it seems inevitable that all biological documents will eventually exist in a digital format and be distributed across the internet. New network services and tools need to be developed to increase retrieval rates for documents and to refine data recovery. Biological data have traditionally been well managed using taxonomic principles. As part of a larger initiative to build an array of names-based network services that emulate taxonomic principles for managing biological information, we undertook the digitization of a major taxonomic reference text, Nomenclator Zoologicus. The process involved replicating the text to a high level of fidelity, parsing the content for inclusion within a database, developing tools to enable expert input into the product, and integrating the metadata and factual content within taxonomic network services. The result is a high-quality and freely available web application (http://uio.mbl.edu/NomenclatorZoologicus/) capable of being exploited in an array of biological informatics services.


Assuntos
Classificação , Biologia Computacional/métodos , Bases de Dados como Assunto , Terminologia como Assunto , Zoologia , Animais , Internet
5.
Zookeys ; (550): 207-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26877660

RESUMO

Scientific names serve to label biodiversity information: information related to species. Names, and their underlying taxonomic definitions, however, are unstable and ambiguous. This negatively impacts the utility of names as identifiers and as effective indexing tools in biological informatics where names are commonly utilized for searching, retrieving and integrating information about species. Semiotics provides a general model for describing the relationship between taxon names and taxon concepts. It distinguishes syntactics, which governs relationships among names, from semantics, which represents the relations between those labels and the taxa to which they refer. In the semiotic context, changes in semantics (i.e., taxonomic circumscription) do not consistently result in a corresponding and reflective change in syntax. Further, when syntactic changes do occur, they may be in response to semantic changes or in response to syntactic rules. This lack of consistency in the cardinal relationship between names and taxa places limits on how scientific names may be used in biological informatics in initially anchoring, and in the subsequent retrieval and integration, of relevant biodiversity information. Precision and recall are two measures of relevance. In biological taxonomy, recall is negatively impacted by changes or ambiguity in syntax while precision is negatively impacted when there are changes or ambiguity in semantics. Because changes in syntax are not correlated with changes in semantics, scientific names may be used, singly or conflated into synonymous sets, to improve recall in pattern recognition or search and retrieval. Names cannot be used, however, to improve precision. This is because changes in syntax do not uniquely identify changes in circumscription. These observations place limits on the utility of scientific names within biological informatics applications that rely on names as identifiers for taxa. Taxonomic systems and services used to organize and integrate information about taxa must accommodate the inherent semantic ambiguity of scientific names. The capture and articulation of circumscription differences (i.e., multiple taxon concepts) within such systems must be accompanied with distinct concept identifiers that can be employed in association with, or in replacement of, traditional scientific names.

6.
BMC Res Notes ; 7: 79, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24495358

RESUMO

BACKGROUND: As biological disciplines extend into the 'big data' world, they will need a names-based infrastructure to index and interconnect distributed data. The infrastructure must have access to all names of all organisms if it is to manage all information. Those who compile lists of species hold different views as to the intellectual property rights that apply to the lists. This creates uncertainty that impedes the development of a much-needed infrastructure for sharing biological data in the digital world. FINDINGS: The laws in the United States of America and European Union are consistent with the position that scientific names of organisms and their compilation in checklists, classifications or taxonomic revisions are not subject to copyright. Compilations of names, such as classifications or checklists, are not creative in the sense of copyright law. Many content providers desire credit for their efforts. CONCLUSIONS: A 'blue list' identifies elements of checklists, classifications and monographs to which intellectual property rights do not apply. To promote sharing, authors of taxonomic content, compilers, intermediaries, and aggregators should receive citable recognition for their contributions, with the greatest recognition being given to the originating authors. Mechanisms for achieving this are discussed.


Assuntos
Classificação , Direitos Autorais , Terminologia como Assunto , Lista de Checagem , Bases de Dados Factuais/legislação & jurisprudência , União Europeia , Internacionalidade/legislação & jurisprudência , Licenciamento , Propriedade/legislação & jurisprudência , Editoração/legislação & jurisprudência , Editoração/normas , Sistema de Registros , Estados Unidos
7.
PhytoKeys ; (9): 1-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22371687

RESUMO

The paper describes a pilot project to convert a conventional floristic checklist, written in a standard word processing program, into structured data in the Darwin Core Archive format. After peer-review and editorial acceptance, the final revised version of the checklist was converted into Darwin Core Archive by means of regular expressions and published thereafter in both human-readable form as traditional botanical publication and Darwin Core Archive data files. The data were published and indexed through the Global Biodiversity Information Facility (GBIF) Integrated Publishing Toolkit (IPT) and significant portions of the text of the paper were used to describe the metadata on IPT. After publication, the data will become available through the GBIF infrastructure and can be re-used on their own or collated with other data.

8.
Zookeys ; (50): 1-16, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21594113

RESUMO

The concept of semantic tagging and its potential for semantic enhancements to taxonomic papers is outlined and illustrated by four exemplar papers published in the present issue of ZooKeys. The four papers were created in different ways: (i) written in Microsoft Word and submitted as non-tagged manuscript (doi: 10.3897/zookeys.50.504); (ii) generated from Scratchpads and submitted as XML-tagged manuscripts (doi: 10.3897/zookeys.50.505 and doi: 10.3897/zookeys.50.506); (iii) generated from an author's database (doi: 10.3897/zookeys.50.485) and submitted as XML-tagged manuscript. XML tagging and semantic enhancements were implemented during the editorial process of ZooKeys using the Pensoft Mark Up Tool (PMT), specially designed for this purpose. The XML schema used was TaxPub, an extension to the Document Type Definitions (DTD) of the US National Library of Medicine Journal Archiving and Interchange Tag Suite (NLM). The following innovative methods of tagging, layout, publishing and disseminating the content were tested and implemented within the ZooKeys editorial workflow: (1) highly automated, fine-grained XML tagging based on TaxPub; (2) final XML output of the paper validated against the NLM DTD for archiving in PubMedCentral; (3) bibliographic metadata embedded in the PDF through XMP (Extensible Metadata Platform); (4) PDF uploaded after publication to the Biodiversity Heritage Library (BHL); (5) taxon treatments supplied through XML to Plazi; (6) semantically enhanced HTML version of the paper encompassing numerous internal and external links and linkouts, such as: (i) vizualisation of main tag elements within the text (e.g., taxon names, taxon treatments, localities, etc.); (ii) internal cross-linking between paper sections, citations, references, tables, and figures; (iii) mapping of localities listed in the whole paper or within separate taxon treatments; (v) taxon names autotagged, dynamically mapped and linked through the Pensoft Taxon Profile (PTP) to large international database services and indexers such as Global Biodiversity Information Facility (GBIF), National Center for Biotechnology Information (NCBI), Barcode of Life (BOLD), Encyclopedia of Life (EOL), ZooBank, Wikipedia, Wikispecies, Wikimedia, and others; (vi) GenBank accession numbers autotagged and linked to NCBI; (vii) external links of taxon names to references in PubMed, Google Scholar, Biodiversity Heritage Library and other sources. With the launching of the working example, ZooKeys becomes the first taxonomic journal to provide a complete XML-based editorial, publication and dissemination workflow implemented as a routine and cost-efficient practice. It is anticipated that XML-based workflow will also soon be implemented in botany through PhytoKeys, a forthcoming partner journal of ZooKeys. The semantic markup and enhancements are expected to greatly extend and accelerate the way taxonomic information is published, disseminated and used.

9.
Curr Protoc Bioinformatics ; Chapter 14: 14.2.1-14.2.17, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18428760

RESUMO

Pharmabase is designed to form a bridge between the molecular dimension of cell transport processes and the functional manipulation of the protein players. It has as its emphasis membrane transport and related pharmacology. Several search and navigation options are available, including membrane transport, disease, and a graphic interface arranged by pathway and cell type. The level of entry to the database can be tailored to the investigator's level of expertise. The final product of Pharmabase is a Compound Record detailing the use and targets of individual compounds. Navigation routes generally fall into hierarchical keys and are cross-referenced. Pharmabase encourages input from its user community. It is maintained by the BioCurrents Research Center, an NIH resource funded through the National Center for Research Resources (NCRR).


Assuntos
Fenômenos Fisiológicos Celulares , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Sistemas de Liberação de Medicamentos/métodos , Armazenamento e Recuperação da Informação/métodos , Preparações Farmacêuticas/administração & dosagem , Interface Usuário-Computador
10.
Syst Biol ; 55(3): 367-73, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16861205

RESUMO

Taxonomic indexing refers to a new array of taxonomically intelligent network services that use nomenclatural principles and elements of expert taxonomic knowledge to manage information about organisms. Taxonomic indexing was introduced to help manage the increasing amounts of digital information about biology. It has been designed to form a near basal layer in a layered cyberinfrastructure that deals with biological information. Taxonomic Indexing accommodates the special problems of using names of organisms to index biological material. It links alternative names for the same entity (reconciliation), and distinguishes between uses of the same name for different entities (disambiguation), and names are placed within an indefinite number of hierarchical schemes. In order to access all information on all organisms, Taxonomic indexing must be able to call on a registry of all names in all forms for all organisms. NameBank has been developed to meet that need. Taxonomic indexing is an area of informatics that overlaps with taxonomy, is dependent on the expert input of taxonomists, and reveals the relevance of the discipline to a wide audience.


Assuntos
Indexação e Redação de Resumos/métodos , Classificação/métodos , Terminologia como Assunto , Indexação e Redação de Resumos/tendências , Animais , Botânica , Zoologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA