Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Comput Biol ; 17(10): e1009461, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610008

RESUMO

Recombinant protein production is a key process in generating proteins of interest in the pharmaceutical industry and biomedical research. However, about 50% of recombinant proteins fail to be expressed in a variety of host cells. Here we show that the accessibility of translation initiation sites modelled using the mRNA base-unpairing across the Boltzmann's ensemble significantly outperforms alternative features. This approach accurately predicts the successes or failures of expression experiments, which utilised Escherichia coli cells to express 11,430 recombinant proteins from over 189 diverse species. On this basis, we develop TIsigner that uses simulated annealing to modify up to the first nine codons of mRNAs with synonymous substitutions. We show that accessibility captures the key propensity beyond the target region (initiation sites in this case), as a modest number of synonymous changes is sufficient to tune the recombinant protein expression levels. We build a stochastic simulation model and show that higher accessibility leads to higher protein production and slower cell growth, supporting the idea of protein cost, where cell growth is constrained by protein circuits during overexpression.


Assuntos
Códon de Iniciação/genética , Códon de Terminação/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Mutação Silenciosa/genética , Biologia Computacional
2.
Appl Environ Microbiol ; 87(18): e0098221, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34260309

RESUMO

Bacterial growth is classically assessed by measuring the increases in optical density of pure cultures in shaken liquid media. Measuring growth using optical density has severe limitations when studying multistrain interactions, as it is not possible to measure the growth of individual strains within mixed cultures. Here, we demonstrated that constitutively expressed fluorescent proteins can be used to track the growth of individual strains in different liquid media. Fluorescence measurements were highly correlated with optical density measurements and cell counts. This allowed us to assess bacterial growth not only in pure cultures but also in mixed bacterial cultures and determine the impact of a competitor on a focal strain, thereby assessing relative fitness. Furthermore, we were able to track the growth of two different strains simultaneously by using fluorescent proteins with differential excitation and emission wavelengths. Bacterial densities measured by fluorescence yielded more consistent data between technical replicates than optical density measurements. Our setup employs fluorescence microplate readers that allow high throughput and replication. IMPORTANCE We expand on an important limitation of the concept of measuring bacterial growth, which is classically limited to one strain at a time. By adopting our approach, it is possible to measure the growth of several bacterial strains simultaneously with high temporal resolution and in a high-throughput manner. This is important to investigate bacterial interactions, such as competition and facilitation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Luminescentes/metabolismo , Pantoea/crescimento & desenvolvimento , Pantoea/metabolismo , Fluorescência , Ensaios de Triagem em Larga Escala , Proteína Vermelha Fluorescente
3.
J Bacteriol ; 195(3): 502-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175652

RESUMO

Sortases are transpeptidases that couple surface proteins to the peptidoglycan of Gram-positive bacteria, and several sortase-dependent proteins (SDPs) have been demonstrated to be crucial for the interactions of pathogenic and nonpathogenic bacteria with their hosts. Here, we studied the role of sortase A (SrtA) in Lactobacillus plantarum WCFS1, a model Lactobacillus for probiotic organisms. An isogenic srtA deletion derivative was constructed which did not show residual SrtA activity. DNA microarray-based transcriptome analysis revealed that the srtA deletion had only minor impact on the full-genome transcriptome of L. plantarum, while the expression of SDP-encoding genes remained completely unaffected. Mass spectrometry analysis of the bacterial cell surface proteome, which was assessed by trypsinization of intact bacterial cells and by LiCl protein extraction, revealed that SrtA is required for the appropriate subcellular location of specific SDPs and for their covalent coupling to the cell envelope, respectively. We further found that SrtA deficiency did not affect the persistence and/or survival of L. plantarum in the gastrointestinal tract of mice. In addition, an in vitro immature dendritic cell (iDC) assay revealed that the removal of surface proteins by LiCl strongly affected the proinflammatory signaling properties of the SrtA-deficient strain but not of the wild type, which suggests a role of SDPs in host immune response modulation.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Lactobacillus plantarum/enzimologia , Transporte Proteico/fisiologia , Aminoaciltransferases/genética , Animais , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Células Dendríticas/imunologia , Trato Gastrointestinal/imunologia , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Lactobacillus plantarum/genética , Lactobacillus plantarum/imunologia , Proteínas de Membrana , Camundongos , Transcriptoma
4.
ISME J ; 17(9): 1445-1454, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37355740

RESUMO

The phyllosphere is densely colonised by microbial communities, despite sparse and heterogeneously distributed resources. The limitation of resources is expected to drive bacterial competition resulting in exclusion or coexistence based on fitness differences and resource overlap between individual colonisers. We studied the impact of resource competition by determining the effects of different bacterial colonisers on the growth of the model epiphyte Pantoea eucalypti 299R (Pe299R). Resource overlap was predicted based on genome-scale metabolic modelling. By combining results of metabolic modelling and pairwise competitions in the Arabidopsis thaliana phyllosphere and in vitro, we found that ten resources sufficed to explain fitness of Pe299R. An effect of both resource overlap and phylogenetic relationships was found on competition outcomes in vitro as well as in the phyllosphere. However, effects of resource competition were much weaker in the phyllosphere when compared to in vitro experiments. When investigating growth dynamics and reproductive success at the single-cell resolution, resource overlap and phylogenetic relationships are only weakly correlated with epiphytic Pe299R reproductive success, indicating that the leaf's spatial heterogeneity mitigates resource competition. Although the correlation is weak, the presence of competitors led to the development of Pe299R subpopulations that experienced different life histories and cell divisions. In some in planta competitions, Pe299R benefitted from the presence of epiphytes despite high resource overlap to the competitor strain suggesting other factors having stronger effects than resource competition. This study provides fundamental insights into how bacterial communities are shaped in heterogeneous environments and a framework to predict competition outcomes.


Assuntos
Bactérias , Reprodução , Filogenia , Bactérias/genética
5.
Nat Commun ; 14(1): 1120, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849793

RESUMO

In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a "transport" domain and a "scaffold" domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na+ and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an 'elevator-with-an-operator' mechanism.


Assuntos
Proteínas de Membrana Transportadoras , Ácido N-Acetilneuramínico , Transporte Biológico , Archaea , Trifosfato de Adenosina
6.
Microb Cell Fact ; 11: 123, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22967304

RESUMO

BACKGROUND: Specific strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA) in bacterial physiology and probiotic-host interactions remain obscure. L. plantarum WCFS1 harbors the genetic potential to switch WTA backbone alditol, providing an opportunity to study the impact of WTA backbone modifications in an isogenic background. RESULTS: Through genome mining and mutagenesis we constructed derivatives that synthesize alternative WTA variants. The mutants were shown to completely lack WTA, or produce WTA and LTA that lack D-Ala substitution, or ribitol-backbone WTA instead of the wild-type glycerol-containing backbone. DNA micro-array experiments established that the tarIJKL gene cluster is required for the biosynthesis of this alternative WTA backbone, and suggest ribose and arabinose are precursors thereof. Increased tarIJKL expression was not observed in any of our previously performed DNA microarray experiments, nor in qRT-PCR analyses of L. plantarum grown on various carbon sources, leaving the natural conditions leading to WTA backbone alditol switching, if any, to be identified. Human embryonic kidney NF-κB reporter cells expressing Toll like receptor (TLR)-2/6 were exposed to purified WTAs and/or the TA mutants, indicating that WTA is not directly involved in TLR-2/6 signaling, but attenuates this signaling in a backbone independent manner, likely by affecting the release and exposure of immunomodulatory compounds such as LTA. Moreover, human dendritic cells did not secrete any cytokines when purified WTAs were applied, whereas they secreted drastically decreased levels of the pro-inflammatory cytokines IL-12p70 and TNF-α after stimulation with the WTA mutants as compared to the wild-type. CONCLUSIONS: The study presented here correlates structural differences in WTA to their functional characteristics, thereby providing important information aiding to improve our understanding of molecular host-microbe interactions and probiotic functionality.


Assuntos
Lactobacillus plantarum/metabolismo , Álcoois Açúcares/metabolismo , Ácidos Teicoicos/metabolismo , Linhagem Celular , Parede Celular/química , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Genoma Bacteriano , Humanos , Lactobacillus plantarum/genética , Mutagênese , NF-kappa B/metabolismo , Transdução de Sinais , Ácidos Teicoicos/farmacologia , Receptor 2 Toll-Like/metabolismo , Receptor 6 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Microb Cell Fact ; 11: 149, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23170998

RESUMO

BACKGROUND: Bacterial cell surface-associated polysaccharides are involved in the interactions of bacteria with their environment and play an important role in the communication between pathogenic bacteria and their host organisms. Cell surface polysaccharides of probiotic species are far less well described. Therefore, improved knowledge on these molecules is potentially of great importance to understand the strain-specific and proposed beneficial modes of probiotic action. RESULTS: The Lactobacillus plantarum WCFS1 genome encodes 4 clusters of genes that are associated with surface polysaccharide production. Two of these clusters appear to encode all functions required for capsular polysaccharide formation (cps2A-J and cps4A-J), while the remaining clusters are predicted to lack genes encoding chain-length control functions and a priming glycosyl-transferase (cps1A-I and cps3A-J). We constructed L. plantarum WCFS1 gene deletion mutants that lack individual (Δcps1A-I, Δcps2A-J, Δcps3A-J and Δcps4A-J) or combinations of cps clusters (Δcps1A-3J and Δcps1A-3I, Δcps4A-J) and assessed the genome wide impact of these mutations by transcriptome analysis. The cps cluster deletions influenced the expression of variable gene sets in the individual cps cluster mutants, but also considerable numbers of up- and down-regulated genes were shared between mutants in cps cluster 1 and 2, as well as between mutant in cps clusters 3 and 4. Additionally, the composition of overall cell surface polysaccharide fractions was altered in each mutant strain, implying that despite the apparent incompleteness of cps1A-I and cps3A-J, all clusters are active and functional in L. plantarum. The Δcps1A-I strain produced surface polysaccharides in equal amounts as compared to the wild-type strain, while the polysaccharides were characterized by a reduced molar mass and the lack of rhamnose. The mutants that lacked functional copies of cps2A-J, cps3A-J or cps4A-J produced decreased levels of surface polysaccharides, whereas the molar mass and the composition of polysaccharides was not affected by these cluster mutations. In the quadruple mutant, the amount of surface polysaccharides was strongly reduced. The impact of the cps cluster mutations on toll-like receptor (TLR)-mediated human nuclear factor (NF)-κB activation in host cells was evaluated using a TLR2 reporter cell line. In comparison to a L. plantarum wild-type derivative, TLR2 activation remained unaffected by the Δcps1A-I and Δcps3A-J mutants but appeared slightly increased after stimulation with the Δcps2A-J and Δcps4A-J mutants, while the Δcps1A-3J and Δcps1A-3J, Δcps4A-J mutants elicited the strongest responses and clearly displayed enhanced TLR2 signaling. CONCLUSIONS: Our study reveals that modulation of surface glycan characteristics in L. plantarum highlights the role of these molecules in shielding of cell envelope embedded host receptor ligands. Although the apparently complete cps clusters (cps2A-J and cps4A-J) contributed individually to this shielding, the removal of all cps clusters led to the strongest signaling enhancement. Our findings provide new insights into cell surface glycan biosynthesis in L. plantarum, which bears relevance in the context of host-cell signaling by probiotic bacteria.


Assuntos
Lactobacillus plantarum/metabolismo , Polissacarídeos Bacterianos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Células HEK293 , Humanos , Família Multigênica , Mutação , NF-kappa B/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
8.
Biophys Rev ; 10(2): 219-227, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29222808

RESUMO

Eukaryotic cell surfaces are decorated with a complex array of glycoconjugates that are usually capped with sialic acids, a large family of over 50 structurally distinct nine-carbon amino sugars, the most common member of which is N-acetylneuraminic acid. Once made available through the action of neuraminidases, bacterial pathogens and commensals utilise host-derived sialic acid by degrading it for energy or repurposing the sialic acid onto their own cell surface to camouflage the bacterium from the immune system. A functional sialic acid transporter has been shown to be essential for the uptake of sialic acid in a range of human bacterial pathogens and important for host colonisation and persistence. Here, we review the state-of-play in the field with respect to the molecular mechanisms by which these bio-nanomachines transport sialic acids across bacterial cell membranes.

9.
Front Microbiol ; 9: 3052, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30631309

RESUMO

Differential fluorescent labeling of bacteria has become instrumental for many aspects of microbiological research, such as the study of biofilm formation, bacterial individuality, evolution, and bacterial behavior in complex environments. We designed a variety of plasmids, each bearing one of eight unique, constitutively expressed fluorescent protein genes in conjunction with one of four different antibiotic resistance combinations. The fluorophores mTagBFP2, mTurquoise2, sGFP2, mClover3, sYFP2, mOrange2, mScarlet-I, and mCardinal, encoding for blue, cyan, green, green-yellow, yellow, orange, red, and far-red fluorescent proteins, respectively, were combined with selectable markers conferring tetracycline, gentamicin, kanamycin, and/or chloramphenicol resistance. These constructs were cloned into three different plasmid backbones: a broad host-range plasmid, a Tn5 transposon delivery plasmid, and a Tn7 transposon delivery plasmid. The utility of the plasmids and transposons was tested in bacteria from the phyla Actinobacteria, Proteobacteria, and Bacteroidetes. We were able to tag representatives from the phylum Proteobacteria at least via our Tn5 transposon delivery system. The present study enables labeling bacteria with a set of plasmids available to the community. One potential application of fluorescently-tagged bacterial species is the study of bacteria-bacteria, bacteria-host, and bacteria-environment interactions.

10.
Front Chem ; 6: 233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023356

RESUMO

Mammalian cell surfaces are decorated with complex glycoconjugates that terminate with negatively charged sialic acids. Commensal and pathogenic bacteria can use host-derived sialic acids for a competitive advantage, but require a functional sialic acid transporter to import the sugar into the cell. This work investigates the sodium sialic acid symporter (SiaT) from Staphylococcus aureus (SaSiaT). We demonstrate that SaSiaT rescues an Escherichia coli strain lacking its endogenous sialic acid transporter when grown on the sialic acids N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). We then develop an expression, purification and detergent solubilization system for SaSiaT and demonstrate that the protein is largely monodisperse in solution with a stable monomeric oligomeric state. Binding studies reveal that SaSiaT has a higher affinity for Neu5Gc over Neu5Ac, which was unexpected and is not seen in another SiaT homolog. We develop a homology model and use comparative sequence analyses to identify substitutions in the substrate-binding site of SaSiaT that may explain the altered specificity. SaSiaT is shown to be electrogenic, and transport is dependent upon more than one Na+ ion for every sialic acid molecule. A functional sialic acid transporter is essential for the uptake and utilization of sialic acid in a range of pathogenic bacteria, and developing new inhibitors that target these transporters is a valid mechanism for inhibiting bacterial growth. By demonstrating a route to functional recombinant SaSiaT, and developing the in vivo and in vitro assay systems, our work underpins the design of inhibitors to this transporter.

11.
Eur J Pharmacol ; 668 Suppl 1: S33-42, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21816142

RESUMO

Pharmaceutical agents are routinely used in the treatment of gastrointestinal disorders and their role as modulators of host cell responses is well characterized. In contrast, the understanding of the molecular mechanisms, which determine the role of probiotics, i.e. health-promoting bacteria, as host cell modulators is still in its infancy. Both in vitro and in vivo studies are just starting to reveal the capability of probiotic lactobacilli to modulate host cell-signaling networks and the associated influences on downstream regulatory pathways, including modulation of mucosal cytokine profiles that dictate host immune functions. The communication between probiotic lactobacilli and intestinal host cells is multifactorial and involves an integrative repertoire of receptors on the host side that recognize multiple effector molecules on the bacterial side, of which most have been found to be cell wall- or cell surface-associated compounds and proteins. This review describes the discovery of these bacterial effector molecules and their role in strain- and species-specific modulation of host signaling pathways. Unraveling the mechanisms responsible for probiotic-host interactions will progress this research field towards molecular science and will provide markers for probiotic product quality control as well as host-response efficacy. These developments can ultimately lead to a more dedicated, personalized application of probiotics with strong molecular and scientific support for health promotion.


Assuntos
Lactobacillus/fisiologia , Probióticos/farmacologia , Animais , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Humanos , Lactobacillus/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA