Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816645

RESUMO

RNA-based fluorogenic modules have revolutionized the spatiotemporal localization of RNA molecules. Recently, a fluorophore named 5-((Z)-4-((2-hydroxyethyl)(methyl)amino)benzylidene)-3-methyl-2-((E)-styryl)-3,5-dihydro-4H-imidazol-4-one (NBSI), emitting in red spectrum, and its cognate aptamer named Clivia were identified, exhibiting a large Stokes shift. To explore the underlying molecular basis of this unique RNA-fluorophore complex, we determined the tertiary structure of Clivia-NBSI. The overall structure uses a monomeric, non-G-quadruplex compact coaxial architecture, with NBSI sandwiched at the core junction. Structure-based fluorophore recognition pattern analysis, combined with fluorescence assays, enables the orthogonal use of Clivia-NBSI and other fluorogenic aptamers, paving the way for both dual-emission fluorescence and bioluminescence imaging of RNA molecules within living cells. Furthermore, on the basis of the structure-based substitution assay, we developed a multivalent Clivia fluorogenic aptamer containing multiple minimal NBSI-binding modules. This innovative design notably enhances the recognition sensitivity of fluorophores both in vitro and in vivo, shedding light on future efficient applications in various biomedical and research contexts.

2.
Nucleic Acids Res ; 52(14): 8454-8465, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38769061

RESUMO

Riboswitches are conserved regulatory RNA elements participating in various metabolic pathways. Recently, a novel RNA motif known as the folE RNA motif was discovered upstream of folE genes. It specifically senses tetrahydrofolate (THF) and is therefore termed THF-II riboswitch. To unravel the ligand recognition mechanism of this newly discovered riboswitch and decipher the underlying principles governing its tertiary folding, we determined both the free-form and bound-form THF-II riboswitch in the wild-type sequences. Combining structural information and isothermal titration calorimetry (ITC) binding assays on structure-based mutants, we successfully elucidated the significant long-range interactions governing the function of THF-II riboswitch and identified additional compounds, including alternative natural metabolites and potential lead compounds for drug discovery, that interact with THF-II riboswitch. Our structural research on the ligand recognition mechanism of the THF-II riboswitch not only paves the way for identification of compounds targeting riboswitches, but also facilitates the exploration of THF analogs in diverse biological contexts or for therapeutic applications.


Assuntos
Conformação de Ácido Nucleico , Riboswitch , Tetra-Hidrofolatos , Riboswitch/genética , Tetra-Hidrofolatos/química , Tetra-Hidrofolatos/metabolismo , Ligantes , Modelos Moleculares , Dobramento de RNA , Motivos de Nucleotídeos , Mutação
3.
Artigo em Inglês | MEDLINE | ID: mdl-39148467

RESUMO

Fluorogenic RNA aptamers are in vitro-selected RNA molecules capable of binding to specific fluorophores, significantly increasing their intrinsic fluorescence. Over the past decade, the color palette of fluorescent RNA aptamers has greatly expanded. The emergence and development of these fluorogenic RNA aptamers has introduced a powerful approach for visualizing RNA localization and transport with high spatiotemporal resolution in live cells. To date, a variety of tertiary structures of fluorogenic RNA aptamers have been determined using X-ray crystallography or NMR spectroscopy. Many of these fluorogenic RNA aptamers feature base quadruples or base triples in their fluorophore-binding sites. This review summarizes the structure-based investigations of fluorogenic RNA aptamers, with a focus on their overall folds, ligand-binding pockets and fluorescence activation mechanisms. Additionally, the exploration of how structures guide rational optimization to enhance RNA visualization techniques is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA