RESUMO
From modular vaccine production to protein assembly on nanoparticles, the SpyCatcher/SpyTag system provides a convenient plug-and-display procedure. Here, we established a general-purpose immunoaffinity chromatography (IAC) method for SpyTagged proteins (Spy&IAC). SpyTags are displayed on the surface of nanoparticles to induce high-affinity monoclonal antibodies, allowing the specific capture of the target protein. Taking the key core antigenic regions of two coronaviruses that are currently more threatened in the field of human and animal diseases, the nucleocapsid (N) protein of SARS-CoV-2 and the COE protein of porcine epidemic diarrhea virus (PEDV) as model proteins, a purification model with SpyTag at the N-terminal or C-terminal expressed in E. coli or mammalian cells was constructed. After the efficient elution of Spy&IAC, the final yield of several proteins is about 3.5-15 mg/L culture, and the protein purity is above 90 %. Purification also preserves the assembly function and immunogenicity of the protein to support subsequent modular assembly and immunization programs. This strategy provides a general tool for the efficient purification of SpyTagged proteins from different expression sources and different tag positions, enabling the production of modular vaccines at lower cost and in a shorter time, which will prepare the public health field for potential pandemic threats.
Assuntos
COVID-19 , Proteínas de Escherichia coli , Nanopartículas , Proteínas Periplásmicas , Vacinas , Animais , Suínos , Humanos , Escherichia coli , SARS-CoV-2 , COVID-19/prevenção & controle , Proteínas , Nanopartículas/química , MamíferosRESUMO
African swine fever virus (ASFV), a DNA double-stranded virus with high infectivity and mortality, causing a devastating blow to the pig industry and the world economy. The CD2v protein is an essential immunoprotective protein of ASFV. In this study, we expressed the extracellular region of the CD2v protein in the 293F expression system to achieve proper glycosylation. Monoclonal antibodies (mAbs) were prepared by immunizing mice with the recombinant CD2v protein. Eventually, four mAbs that target the extracellular region of the ASFV CD2v protein were obtained. All four mAbs responded well to the ASFV HLJ/18 strain and recognized the same linear epitope, 154SILE157. The specific shortest amino acid sequence of this epitope has been accurately identified for the first time. Meaningfully, the 154SILE157 epitope was highly conformed in the ASFV Chinese epidemic strain and Georgia2008/1 strains according to the analysis of the conservation and have a fair protective effect. These findings contribute to further understanding of the protein function of CD2v and provide potential support for the development of diagnostic tools and vaccines for ASFV.
RESUMO
African swine fever (ASF) caused by African swine fever virus (ASFV) is becoming a serious threat to the swine industry worldwide. CD2v is a key pathogenic factor of ASFV and the protective antigen with low immunogenicity, whereas viral protein-based nanoparticles have advantages of precise assembly and high immunogenicity. In this study, the CD2v protein fused with Norovirus (NoV) P particle assembled into nanoparticle for improved immunogenicity. Then, CD2v protein nanoparticle and monomer CD2v protein were expressed in HEK293F cells. The former induced higher levels of antibodies, and thus highly potent monoclonal antibodies (mAbs) were generated and characterized. The highest antibody titration of mAb 10A3 reached 1:2048000, and mAb 2E9 had the highest inhibition percent of 84% when competed with ASFV positive serum. Meanwhile, all mAbs reacted specifically with the denatured CD2v protein, and the linear epitope with the location of amino acids 28th to 51st of CD2v extracellular domain sequence was identified. In summary, this study produced a highly immunogenic CD2v protein and generated high-titer mAbs, the precise location of linear epitope on the CD2v was further determined. These findings may provide a powerful help for etiology and serological detection of ASFV.