Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
BMC Infect Dis ; 24(1): 314, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486143

RESUMO

BACKGROUND: Lassa fever is a hemorrhagic disease caused by Lassa virus (LASV), which has been classified by the World Health Organization as one of the top infectious diseases requiring prioritized research. Previous studies have provided insights into the classification and geographic characteristics of LASV lineages. However, the factor of the distribution and evolution characteristics and phylodynamics of the virus was still limited. METHODS: To enhance comprehensive understanding of LASV, we employed phylogenetic analysis, reassortment and recombination detection, and variation evaluation utilizing publicly available viral genome sequences. RESULTS: The results showed the estimated the root of time of the most recent common ancestor (TMRCA) for large (L) segment was approximately 634 (95% HPD: [385879]), whereas the TMRCA for small (S) segment was around 1224 (95% HPD: [10301401]). LASV primarily spread from east to west in West Africa through two routes, and in route 2, the virus independently spread to surrounding countries through Liberia, resulting in a wider spread of LASV. From 1969 to 2018, the effective population size experienced two significant increased, indicating the enhanced genetic diversity of LASV. We also found the evolution rate of L segment was faster than S segment, further results showed zinc-binding protein had the fastest evolution rate. Reassortment events were detected in multiple lineages including sub-lineage IIg, while recombination events were observed within lineage V. Significant amino acid changes in the glycoprotein precursor of LASV were identified, demonstrating sequence diversity among lineages in LASV. CONCLUSION: This study comprehensively elucidated the transmission and evolution of LASV in West Africa, providing detailed insights into reassortment events, recombination events, and amino acid variations.


Assuntos
Febre Lassa , Vírus Lassa , Humanos , Vírus Lassa/genética , Filogenia , Febre Lassa/epidemiologia , Aminoácidos , Libéria
2.
J Med Virol ; 95(7): e28902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394758

RESUMO

Human astrovirus (HAstV) is a single-stranded, positive-sense RNA virus and is the leading cause of viral gastroenteritis. However, despite its prevalence, astroviruses still remain one of the least studied enteroviruses. In this study, we sequenced 11 classical astrovirus strains from clinical samples collected in Shenzhen, China from 2016 to 2019, analyzed their genetic characteristics, and deposited them into GenBank. We conducted phylogenetic analysis using IQ-TREE software, with references to astrovirus sequences worldwide. The phylogeographic analysis was performed using the Bayesian Evolutionary Analysis Sampling Trees program, through Bayesian Markov Chain Monte Carlo sampling. We also conducted recombination analysis with the Recombination Detection Program. The newly sequenced strains were categorized as HAstV genotype 1, which is the predominant genotype in Shenzhen. Phylogeographic reconstruction indicated that HAstV-1 may have migrated from the United States to China, followed by frequent transmission between China and Japan. The recombination analysis revealed recombination events within and across genotypes, and identified a recombination-prone region that produced relatively uniform recombination breakpoints and fragment lengths. The genetic analysis of HAstV strains in Shenzhen addresses the current lack of astrovirus data in the region of Shenzhen and provides key insights to the evolution and transmission of astroviruses worldwide. These findings highlight the importance of improving surveillance of astroviruses.


Assuntos
Infecções por Astroviridae , Astroviridae , Mamastrovirus , Humanos , Filogenia , Teorema de Bayes , Infecções por Astroviridae/epidemiologia , RNA Viral/genética , Fezes , Astroviridae/genética , Mamastrovirus/genética , China/epidemiologia , Genótipo
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298067

RESUMO

Klebsiella pneumoniae is a common human commensal and opportunistic pathogen. In recent years, the clinical isolation and resistance rates of K. pneumoniae have shown a yearly increase, leading to a special interest in mobile genetic elements. Prophages are a representative class of mobile genetic elements that can carry host-friendly genes, transfer horizontally between strains, and coevolve with the host's genome. In this study, we identified 15,946 prophages from the genomes of 1437 fully assembled K. pneumoniae deposited in the NCBI database, with 9755 prophages on chromosomes and 6191 prophages on plasmids. We found prophages to be notably diverse and widely disseminated in the K. pneumoniae genomes. The K. pneumoniae prophages encoded multiple putative virulence factors and antibiotic resistance genes. The comparison of strain types with prophage types suggests that the two may be related. The differences in GC content between the same type of prophages and the genomic region in which they were located indicates the alien properties of the prophages. The overall distribution of GC content suggests that prophages integrated on chromosomes and plasmids may have different evolutionary characteristics. These results suggest a high prevalence of prophages in the K. pneumoniae genome and highlight the effect of prophages on strain characterization.


Assuntos
Klebsiella pneumoniae , Prófagos , Humanos , Prófagos/genética , Klebsiella pneumoniae/genética , Plasmídeos/genética , Genômica , Fatores de Virulência/genética , Antibacterianos , Genoma Bacteriano
4.
J Bacteriol ; 204(6): e0014122, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35652670

RESUMO

We propose a standardized framework to classify target species based on their protein domains, which can be utilized in different contexts, like eukaryotes and prokaryotes. In this study, by applying the framework to the bacterial kingdom as an implementation example and comparing the results with the current taxonomy standards at the phylum level, we came to the conclusion that the sequence of domains rather than the content of domains in a protein and the presence of one domain rather than the number of occurrences of one domain play more important roles in deciding bacterial phenotypes as well as matching the current taxonomy. In addition, the comparison also helps us to better focus on the species that conflict with the current phylum category, as well as to further investigate their phenotypic or genotypic differences. IMPORTANCE A 3-step framework was designed which can be applied to clustering species based on their protein domains, and different candidate models are proposed in each step for better adaptation of various scenarios. We show its implementation for the bacterial kingdom as an example, which helps us to find the most appropriate model combination that will best reflect the relationship between domains and phenotypes in this context. In addition, identifying species that are distant in the results but should be closely related phylogenetically can help us to focus on the mismatch for better understanding of their key phenotypic or genotypic differences.


Assuntos
Bactérias , Eucariotos , Bactérias/genética , Análise por Conglomerados , Fenótipo , Domínios Proteicos
5.
Nature ; 524(7563): 93-6, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25970247

RESUMO

A novel Ebola virus (EBOV) first identified in March 2014 has infected more than 25,000 people in West Africa, resulting in more than 10,000 deaths. Preliminary analyses of genome sequences of 81 EBOV collected from March to June 2014 from Guinea and Sierra Leone suggest that the 2014 EBOV originated from an independent transmission event from its natural reservoir followed by sustained human-to-human infections. It has been reported that the EBOV genome variation might have an effect on the efficacy of sequence-based virus detection and candidate therapeutics. However, only limited viral information has been available since July 2014, when the outbreak entered a rapid growth phase. Here we describe 175 full-length EBOV genome sequences from five severely stricken districts in Sierra Leone from 28 September to 11 November 2014. We found that the 2014 EBOV has become more phylogenetically and genetically diverse from July to November 2014, characterized by the emergence of multiple novel lineages. The substitution rate for the 2014 EBOV was estimated to be 1.23 × 10(-3) substitutions per site per year (95% highest posterior density interval, 1.04 × 10(-3) to 1.41 × 10(-3) substitutions per site per year), approximating to that observed between previous EBOV outbreaks. The sharp increase in genetic diversity of the 2014 EBOV warrants extensive EBOV surveillance in Sierra Leone, Guinea and Liberia to better understand the viral evolution and transmission dynamics of the ongoing outbreak. These data will facilitate the international efforts to develop vaccines and therapeutics.


Assuntos
Ebolavirus/genética , Evolução Molecular , Variação Genética/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Sequência de Bases , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/isolamento & purificação , Monitoramento Epidemiológico , Genoma Viral/genética , Doença pelo Vírus Ebola/transmissão , Humanos , Epidemiologia Molecular , Taxa de Mutação , Filogenia , Filogeografia , Serra Leoa/epidemiologia
7.
Genome ; 59(12): 1063-1075, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27696900

RESUMO

Stenotrophomonas maltophilia is a global multidrug-resistant human opportunistic pathogen in clinical environments. Stenotrophomonas maltophilia is also ubiquitous in aqueous environments, soil, and plants. Various molecular typing methods have revealed that S. maltophilia exhibits high levels of phenotypic and genotypic diversity. However, information regarding the genomic diversity within S. maltophilia and the corresponding genetic mechanisms resulting in said diversity remain scarce. The genome sequences of 17 S. maltophilia strains were selected to investigate the mechanisms contributing to genetic diversity at the genome level. The core and large pan-genomes of the species were first estimated, resulting in a large, open pan-genome. A species phylogeny was also reconstructed based on 344 orthologous genes with one copy per genome, and the contribution of four evolutionary mechanisms to the species genome diversity was quantified: 15%-35% of the genes showed evidence for recombination, 0%-25% of the genes in one genome were likely gained, 0%-44% of the genes in some genomes were likely lost, and less than 0.3% of the genes in a genome were under positive selection pressures. We observed that, among the four main mechanisms, homologous recombination plays a key role in maintaining diversity in S. maltophilia. In this study, we provide an overview of evolution in S. maltophilia to provide a better understanding of its evolutionary dynamics and its relationship with genome diversity.


Assuntos
Fluxo Gênico , Recombinação Genética , Seleção Genética , Stenotrophomonas maltophilia/genética , Proteínas de Bactérias/genética , Evolução Molecular , Variação Genética , Genoma Bacteriano , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Infecções Oportunistas/microbiologia , Filogenia , Stenotrophomonas maltophilia/classificação
9.
BMC Genomics ; 15: 1110, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25511561

RESUMO

BACKGROUND: During the past two decades, avian influenza A H9N2 viruses have spread geographically and ecologically in China. Other than its current role in causing outbreaks in poultry and sporadic human infections by direct transmission, H9N2 virus could also serve as an progenitor for novel human avian influenza viruses including H5N1, H7N9 and H10N8. Hence, H9N2 virus is becoming a notable threat to public health. However, despite multiple lineages and genotypes that were detected by previous studies, the migration dynamics of the H9N2 virus in China is unclear. Increasing such knowledge would help us better prevent and control H9N2 as well as other future potentially threatening viruses from spreading across China. The objectives of this study were to determine the source, migration patterns, and the demography history of avian influenza A H9N2 virus that circulated in China. RESULTS: Using Bayesian phylogeography framework, we showed that the H9N2 virus in mainland China may have originated from the Hong Kong Special Administrative Region (SAR). Southern China, most likely the Guangdong province acts as the primary epicentre for multiple H9N2 strains spreading across the whole country, and eastern China, most likely the Jiangsu province, acts as an important secondary source to seed outbreaks. Our demography inference suggests that during the long-term migration process, H9N2 evolved into multiple diverse lineages and then experienced a selective sweep, which reduced its genetic diversity. Importantly, such a selective sweep may pose a greater threat to public health because novel strains confer higher fitness advantages than strains being replaced and could generate new viruses through reassortment. CONCLUSION: Our analyses indicate that migratory birds, poultry trade and transportation have all contributed to the spreading of the H9N2 virus in China. The ongoing migration and evolution of H9N2, which poses a constant threat to the human population, highlights the need for a more comprehensive surveillance of wild birds and for the enhancement of biosafety for China's poultry industry.


Assuntos
Geografia , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Filogenia , Animais , Teorema de Bayes , China , Humanos , Vírus da Influenza A Subtipo H9N2/classificação , Análise Espaço-Temporal
10.
Heliyon ; 10(11): e32103, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867972

RESUMO

Continuous gain and loss of genes are the primary driving forces of bacterial evolution and environmental adaptation. Studying bacterial evolution in terms of protein domain, which is the fundamental function and evolutionary unit of proteins, can provide a more comprehensive understanding of bacterial differentiation and phenotypic adaptation processes. Therefore, we proposed a phylogenetic tree-based method for detecting genetic gain and loss events in terms of protein domains. Specifically, the method focuses on a single domain to trace its evolution process or on multiple domains to investigate their co-evolution principles. This novel method was validated using 122 Shigella isolates. We found that the loss of a significant number of domains was likely the main driving force behind the evolution of Shigella, which could reduce energy expenditure and preserve only the most essential functions. Additionally, we observed that simultaneously gained and lost domains were often functionally related, which can facilitate and accelerate phenotypic evolutionary adaptation to the environment. All results obtained using our method agree with those of previous studies, which validates our proposed method.

11.
Front Microbiol ; 15: 1389859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721599

RESUMO

Some Brucella spp. are important pathogens. According to the latest prokaryotic taxonomy, the Brucella genus consists of facultative intracellular parasitic Brucella species and extracellular opportunistic or environmental Brucella species. Intracellular Brucella species include classical and nonclassical types, with different species generally exhibiting host preferences. Some classical intracellular Brucella species can cause zoonotic brucellosis, including B. melitensis, B. abortus, B. suis, and B. canis. Extracellular Brucella species comprise opportunistic or environmental species which belonged formerly to the genus Ochrobactrum and thus nowadays renamed as for example Brucella intermedia or Brucella anthropi, which are the most frequent opportunistic human pathogens within the recently expanded genus Brucella. The cause of the diverse phenotypic characteristics of different Brucella species is still unclear. To further investigate the genetic evolutionary characteristics of the Brucella genus and elucidate the relationship between its genomic composition and prediction of phenotypic traits, we collected the genomic data of Brucella from the NCBI Genome database and conducted a comparative genomics study. We found that classical and nonclassical intracellular Brucella species and extracellular Brucella species exhibited differences in phylogenetic relationships, horizontal gene transfer and distribution patterns of mobile genetic elements, virulence factor genes, and antibiotic resistance genes, showing the close relationship between the genetic variations and prediction of phenotypic traits of different Brucella species. Furthermore, we found significant differences in horizontal gene transfer and the distribution patterns of mobile genetic elements, virulence factor genes, and antibiotic resistance genes between the two chromosomes of Brucella, indicating that the two chromosomes had distinct dynamics and plasticity and played different roles in the survival and evolution of Brucella. These findings provide new directions for exploring the genetic evolutionary characteristics of the Brucella genus and could offer new clues to elucidate the factors influencing the phenotypic diversity of the Brucella genus.

12.
Virology ; 592: 109994, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38277806

RESUMO

Two vaccines ACAM 2000 and JYNNEOS have obtained approval from the Food and Drug Administration as preventive measures against monkeypox, contributing significantly to the management of the monkeypox epidemic. Nonetheless, research has demonstrated that smallpox vaccination offers approximately 88.8% protection against monkeypox, while immunization with these vaccines generates relatively low levels of neutralizing antibodies. In this work, we performed a comprehensive comparison of antigens between the 2022-2023 monkeypox strains and the smallpox vaccine strains. Our analysis has revealed considerable amino acid changes in all 27 antigens, including core and envelope proteins. Amino acid substitutions within B cell epitopes were observed in 26 of these antigens, with at least half of the antigen substitutions occurring within B cell epitopes in 20 out of the 26 antigens analyzed. These findings may raise potential concerns regarding the efficacy of these vaccines.


Assuntos
Mpox , Vacina Antivariólica , Varíola , Humanos , Mpox/epidemiologia , Mpox/prevenção & controle , Monkeypox virus , Varíola/prevenção & controle , Epitopos de Linfócito B , Vacinação
13.
Front Cell Infect Microbiol ; 13: 1161445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153142

RESUMO

Driven by various mutations on the viral Spike protein, diverse variants of SARS-CoV-2 have emerged and prevailed repeatedly, significantly prolonging the pandemic. This phenomenon necessitates the identification of key Spike mutations for fitness enhancement. To address the need, this manuscript formulates a well-defined framework of causal inference methods for evaluating and identifying key Spike mutations to the viral fitness of SARS-CoV-2. In the context of large-scale genomes of SARS-CoV-2, it estimates the statistical contribution of mutations to viral fitness across lineages and therefore identifies important mutations. Further, identified key mutations are validated by computational methods to possess functional effects, including Spike stability, receptor-binding affinity, and potential for immune escape. Based on the effect score of each mutation, individual key fitness-enhancing mutations such as D614G and T478K are identified and studied. From individual mutations to protein domains, this paper recognizes key protein regions on the Spike protein, including the receptor-binding domain and the N-terminal domain. This research even makes further efforts to investigate viral fitness via mutational effect scores, allowing us to compute the fitness score of different SARS-CoV-2 strains and predict their transmission capacity based solely on their viral sequence. This prediction of viral fitness has been validated using BA.2.12.1, which is not used for regression training but well fits the prediction. To the best of our knowledge, this is the first research to apply causal inference models to mutational analysis on large-scale genomes of SARS-CoV-2. Our findings produce innovative and systematic insights into SARS-CoV-2 and promotes functional studies of its key mutations, serving as reliable guidance about mutations of interest.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
14.
Int J Biol Macromol ; 253(Pt 8): 127597, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37884245

RESUMO

Talaromyces (Penicillium) marneffei is an intracellular pathogenic fungus. Some strains of this fungus have been misidentified due to the similarity between Talaromyces and Penicillium. T. marneffei has mainly been found to afflict immunocompromised individuals, causing respiratory, skin, and systemic mycosis. Mp1p is a key virulence factor that can help T. marneffei evade clearance by the normally functioning immune system. Understanding how novel functions arise is an intriguing question in many fields of biology. Mp1p has two homologous domains (Mp1p-LBD1 and Mp1p-LBD2). Sequence similarity searches with Mp1p-LBD sequences revealed Mp1p homologs in many other pathogenic fungi. Integrated information on the taxonomic distribution, phylogenetic relationships, and sequence similarity of Mp1p domains revealed that the ancestor of Mp1p-LBDs was acquired through horizontal gene transfer (HGT). Additional evidence revealed that Mp1p homologs have undergone extensive gene duplications in T. marneffei. Mp1p might be a result of gene fusion following gene duplication. Furthermore, we propose a new method for identifying Talaromyces and identify 4 strains with misclassification errors. Our results characterize the evolutionary mechanism of T. marneffei evasion of host innate immune defense and clearly demonstrate the role of gene duplication and HGT in the evolution of host immune escape by T. marneffei.


Assuntos
Micoses , Talaromyces , Humanos , Talaromyces/genética , Filogenia , Micoses/genética , Micoses/microbiologia , Imunidade Inata/genética
15.
Front Microbiol ; 13: 1045314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466664

RESUMO

Incompatibility groups IncA and IncC plasmids are of great concern due to their ability to disseminate antibiotic resistance in bacteria via conjugative transfer. A deep understanding of their genomic structures and evolutionary characteristics is of great significance for improving our knowledge about its multidrug-resistance evolution and dissemination. However, current knowledge of their backbone structure, features of core functional modules and the characteristics of variable regions is based on a few plasmids, which highlights the need for a comprehensive systematic study. The present study thoroughly compared and analysed 678 IncA and IncC plasmid genomes. We found that their core functional genes were occasionally deficient and sometimes existed as multiple functional copies/multiple families, which resulted in much diversity. The phylogeny of 13 core functional genes corresponded well to the plasmid subtypes. The conjugative transfer system gained diverse complexity and exhibited many previously unnoticed types with multiple combinations. The insertion of mobile genetic elements (MGEs) in plasmids varied between types and was present in 4 insertion spots in different types of plasmids with certain types of transposons, integrons and insertion sequences. The impact of gene duplication, deletion, the insertion of MGEs, genome rearrangement and recombination resulted in the complex dynamic variable backbone of IncA and IncC plasmids. And IncA and IncC plasmids were more complex than their closest relative SXT/R391 integrative conjugative elements (ICEs), which included nearly all of the diversity of SXT/R391 in key systems. Our work demonstrated a global and systematic view of the IncA and IncC plasmids and provides many new insights into their genome evolution.

16.
Engineering (Beijing) ; 13: 107-115, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34457370

RESUMO

In 2020 and 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, caused a global pandemic. Vaccines are expected to reduce the pressure of prevention and control, and have become the most effective strategy to solve the pandemic crisis. SARS-CoV-2 infects the host by binding to the cellular receptor angiotensin converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the surface spike (S) glycoprotein. In this study, a candidate vaccine based on a RBD recombinant subunit was prepared by means of a novel glycoengineered yeast Pichia pastoris expression system with characteristics of glycosylation modification similar to those of mammalian cells. The candidate vaccine effectively stimulated mice to produce high-titer anti-RBD specific antibody. Furthermore, the specific antibody titer and virus-neutralizing antibody (NAb) titer induced by the vaccine were increased significantly by the combination of the double adjuvants Al(OH)3 and CpG. Our results showed that the virus-NAb lasted for more than six months in mice. To summarize, we have obtained a SARS-CoV-2 vaccine based on the RBD of the S glycoprotein expressed in glycoengineered Pichia pastoris, which stimulates neutralizing and protective antibody responses. A technical route for fucose-free complex-type N-glycosylation modified recombinant subunit vaccine preparation has been established.

17.
Front Microbiol ; 12: 751142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975784

RESUMO

Reassortment among avian influenza viruses is the main source of novel avian influenza virus subtypes. Studies have shown that the H9N2 virus often donates internal segments to generate novel reassortant avian influenza viruses, acting as a reassortment template. However, the characteristics of the internal pattern of reassortment remain unclear. In this article, we first defined the core gene pool of the internal segments of the H9N2 virus that provide templates for reassortment. We used genetic distance and sequence similarity to define typical clusters in the core gene pool. Then, we analyzed the phylogenetic relationships, feature vector distances, geographic distributions and mutation sites of strains related to the core gene pool. Strains in the same typical clusters have close phylogenetic relationships and feature vector distances. We also found that these typical clusters can be divided into three categories according to their main geographic distribution area. Furthermore, typical clusters in the same geographic area contain some common mutation patterns. Our results suggest that typical clusters in the core gene pool affect the reassortment events of the H9N2 virus in many respects, such as geographic distribution and amino acid mutation sites.

18.
Front Microbiol ; 12: 793500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975817

RESUMO

Influenza A virus (IAV) genomes are composed of eight single-stranded RNA segments. Genetic exchange through reassortment of the segmented genomes often endows IAVs with new genetic characteristics, which may affect transmissibility and pathogenicity of the viruses. However, a comprehensive understanding of the reassortment history of IAVs remains lacking. To this end, we assembled 40,296 whole-genome sequences of IAVs for analysis. Using a new clustering method based on Mean Pairwise Distances in the phylogenetic trees, we classified each segment of IAVs into clades. Correspondingly, reassortment events among IAVs were detected by checking the segment clade compositions of related genomes under specific environment factors and time period. We systematically identified 1,927 possible reassortment events of IAVs and constructed their reassortment network. Interestingly, minimum spanning tree of the reassortment network reproved that swine act as an intermediate host in the reassortment history of IAVs between avian species and humans. Moreover, reassortment patterns among related subtypes constructed in this study are consistent with previous studies. Taken together, our genome-wide reassortment analysis of all the IAVs offers an overview of the leaping evolution of the virus and a comprehensive network representing the relationships of IAVs.

19.
Nat Commun ; 12(1): 5695, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584097

RESUMO

The dynamics of SARS-CoV-2 RNA structure and their functional relevance are largely unknown. Here we develop a simplified SPLASH assay and comprehensively map the in vivo RNA-RNA interactome of SARS-CoV-2 genome across viral life cycle. We report canonical and alternative structures including 5'-UTR and 3'-UTR, frameshifting element (FSE) pseudoknot and genome cyclization in both cells and virions. We provide direct evidence of interactions between Transcription Regulating Sequences, which facilitate discontinuous transcription. In addition, we reveal alternative short and long distance arches around FSE. More importantly, we find that within virions, while SARS-CoV-2 genome RNA undergoes intensive compaction, genome domains remain stable but with strengthened demarcation of local domains and weakened global cyclization. Taken together, our analysis reveals the structural basis for the regulation of replication, discontinuous transcription and translational frameshifting, the alternative conformations and the maintenance of global genome organization during the whole life cycle of SARS-CoV-2, which we anticipate will help develop better antiviral strategies.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/genética , Genoma Viral/genética , RNA Viral/genética , SARS-CoV-2/genética , Animais , COVID-19/virologia , Chlorocebus aethiops , Humanos , RNA-Seq , Transcrição Gênica , Células Vero , Replicação Viral/genética
20.
Biol Direct ; 15(1): 6, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131884

RESUMO

BACKGROUND: Accurate classification of different Burkholderia cepacia complex (BCC) species is essential for therapy, prognosis assessment and research. The taxonomic status of BCC remains problematic and an improved knowledge about the classification of BCC is in particular needed. METHODS: We compared phylogenetic trees of BCC based on 16S rRNA, recA, hisA and MLSA (multilocus sequence analysis). Using the available whole genome sequences of BCC, we inferred a species tree based on estimated single-copy orthologous genes and demarcated species of BCC using dDDH/ANI clustering. RESULTS: We showed that 16S rRNA, recA, hisA and MLSA have limited resolutions in the taxonomic study of closely related bacteria such as BCC. Our estimated species tree and dDDH/ANI clustering clearly separated 116 BCC strains into 36 clusters. With the appropriate reclassification of misidentified strains, these clusters corresponded to 22 known species as well as 14 putative novel species. CONCLUSIONS: This is the first large-scale and systematic study of the taxonomic status of the BCC and could contribute to further insights into BCC taxonomy. Our study suggested that conjunctive use of core phylogeny based on single-copy orthologous genes, as well as pangenome-based dDDH/ANI clustering would provide a preferable framework for demarcating closely related species. REVIEWER: This article was reviewed by Dr. Xianwen Ren.


Assuntos
Complexo Burkholderia cepacia/classificação , Genoma Bacteriano , Filogenia , Proteínas de Bactérias/análise , Complexo Burkholderia cepacia/genética , Tipagem de Sequências Multilocus , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Recombinases Rec A/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA