Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(2): 1204-1209, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30682253

RESUMO

Silicon photonics has been a very active area of research especially in the past two decades in order to meet the ever-increasing demand for more computational power and faster device speeds and their natural compatibility with complementary metal-oxide semiconductor. In order to develop Si as a useful photonics material, essential photonic components such as light sources, waveguides, wavelength convertors, modulators, and detectors need to be developed and integrated. However, due to the indirect electronic bandgap of Si, conventional light emission devices such as light-emitting diodes and lasers cannot be built. Therefore, there has been considerable interest in developing Si-based Raman lasers, which are nonlinear devices and require large stimulated Raman scattering (SRS) in an optical cavity. However, due to the low quantum yield of SRS in Si, Raman lasers have very large device footprints and high lasing threshold, making them unsuitable for faster, smaller, and energy-efficient devices. Here, we report strong SRS and extremely high Raman gain in Si nanowire optical cavities in the visible region with measured SRS threshold as low as 30 kW/cm2. At cavity mode resonance, light is confined into a low mode volume and high intensity electromagnetic mode inside the Si nanowire due to its high refractive index, which leads to strong SRS at low pump intensities. Electromagnetic calculations reveal greater than 6 orders of magnitude increase in Raman gain coefficient at 532 nm pump wavelength, compared to the gain value at 1.55 µm wavelength reported in literature, despite the 108 higher losses at 532 nm. Because of the high gain in such small structures, we believe that this is a significant first step in realizing a monolithically integrable nanoscale low-powered Si Raman laser.

2.
Nano Lett ; 18(3): 1620-1627, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29406729

RESUMO

Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

3.
Neuropathology ; 38(5): 484-492, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30187543

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Due to the heterogeneity of human TBI, none of the available animal models can reproduce the entire spectrum of TBI. This study was designed to develop a novel-graded TBI rat model which is induced by closed head impacts (CHI) with reproducible brain damage and neurological dysfunction. A total of 75 male Sprague-Dawley rats (200 ± 20 g) were randomly equally divided into five groups: the Sham, 0.5, 0.6, 0.7 and 0.8 MPa groups. A custom-made, air-driven injury apparatus was used to induce CHIs (from 0.5 to 0.8 MPa). The kinematic parameters during the procedure were recorded by a force sensor and a high-speed camera. Mortality rate, duration of unconsciousness (latency period of righting reflex), modified neurological severity score (mNSS) and whole brain water content (BWC) were examined. Pathological changes were evaluated by hematoxylin-eosin (HE) stain and immunohistochemical stain for amyloid precursor protein (APP). The impact force and speed were 785.3 ± 14.12 N and 5.71 m/s in the 0.5 MPa group, 837.72 ± 10.41 N and 6.06 m/s in the 0.6 MPa group, 857.65 ± 11.11 N and 6.25 m/s in the 0.7 MPa group, and 955.6 ± 16.35 N and 6.67 m/s in the 0.8 MPa group. The periods of loss of righting reflex in 0.6-0.8 MPa groups were significantly higher than that in the Sham group. The mNSS score and BWC of the 0.8 MPa group remained higher 24 h after injury than other groups. Brain damage was indicated by increased APP expression in TBI rats. In conclusion, the newly developed CHI rat model was a highly controlled and reproducible graded TBI model, and provided a useful tool to investigate the underlying mechanism and therapeutic effects of TBI with various injury severities.


Assuntos
Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Animais , Masculino , Ratos , Ratos Sprague-Dawley
4.
Nano Lett ; 17(3): 1839-1845, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28166635

RESUMO

The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.

5.
Nano Lett ; 16(7): 4404-9, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27351823

RESUMO

We demonstrate that optical second harmonic generation (SHG) can be utilized to determine the exact nature of nanotwins in noncentrosymmetric crystals, which is challenging to resolve via conventional transmission electron or scanned probe microscopies. Using single-crystalline nanotwinned CdTe nanobelts and nanowires as a model system, we show that SHG polarimetry can distinguish between upright (Cd-Te bonds) and inverted (Cd-Cd or Te-Te bonds) twin boundaries in the system. Inverted twin boundaries are generally not reported in nanowires due to the lack of techniques and complexity associated with the study of the nature of such defects. Precise characterization of the nature of defects in nanocrystals is required for deeper understanding of their growth and physical properties to enable their application in future devices.

6.
Nano Lett ; 16(3): 1631-6, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26854706

RESUMO

Emerging two-dimensional semiconductor materials possess a giant second order nonlinear response due to excitonic effects while the monolayer thickness of such active materials limits their use in practical nonlinear devices. Here, we report 3300 times optomechanical enhancement of second harmonic generation from a MoS2 monolayer in a doubly resonant on-chip optical cavity. We achieve this by engineering the nonlinear light-matter interaction in a microelectro-mechanical system enabled optical frequency doubling device based on an electrostatically tunable Fabry-Perot microresonator. Our versatile optomechanical approach will pave the way for next generation efficient on-chip tunable light sources, sensors, and systems based on molecularly thin materials.

7.
Opt Express ; 24(12): 13459-66, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410362

RESUMO

Here, we report experimental demonstration of dynamic control and enhancement of second harmonic generation and two photon excited photoluminescence in CdS nanoplates via an electromechanically reconfigurable Fabry-Perot (FP) microcavity. Microcavity coupled CdS nanoplates can be configured as a single or dual wavelength nonlinear light source by tuning the pump wavelength while the output intensities can be tuned by the on-chip control voltage. Our work realizes a reconfigurable device platform with insight toward advanced optical devices based on semiconductor nanoplates for next generation on-chip tunable light sources, sensors and optomechanical systems.

8.
Nano Lett ; 15(11): 7341-6, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26421441

RESUMO

We demonstrate the utility of optical second harmonic generation (SHG) polarimetry to perform structural characterization of noncentrosymmetric, single-crystalline II-VI semiconducting nanowires, nanobelts, and nanoflakes. By analyzing anisotropic SHG polarimetric patterns, we distinguish between wurtzite and zincblende II-VI semiconducting crystal structures and determine their growth orientation. The crystallography of these nanostructures was then confirmed via transmission electron microscopy measurements performed on the same system. In addition, we show that some intrinsic material properties such as nonlinear coefficients and geometry-dependent optical in-coupling coefficients can also be determined from the SHG experiments in WZ nanobelts. The ability to perform SHG-based structural characterization and crystallographic study of II-VI semiconducting single-crystalline nanomaterials will be useful to correlate structure-property relationships of nanodevices on which transmission electron microscopy measurements cannot be typically performed.

9.
Nano Lett ; 14(11): 6564-71, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25301247

RESUMO

Semiconductor nanostructures such as nanowires and nanoribbons functioning as Fabry-Pérot (F-P)-type optical cavities and nanolasers have attracted great interest not only for their potential use in nanophotonic systems but also to understand the physics of light-matter interactions at the nanoscale. Due to their nanoscale dimensions, new techniques need to be continuously developed to characterize the nature of highly confined optical modes. Furthermore, the inadequacy of typical far-field photoluminescence experiments for characterizing the nanoscale cavity modes such as parity and order has precluded efforts to obtain precise information that is required to fully understand these cavities. Here, we utilize a modified Young's interference method based on angle-resolved microphotoluminescence spectral technique to directly reveal the parity of F-P cavity modes in CdS nanostructures functioning as waveguides and nanolasers. From these analyses, the mode order can be straightforwardly obtained with the help of numerical simulations. Moreover, we show that the Young's technique is a general technique applicable to any F-P type cavities in nanoribbons, nanowires, or other photonic and plasmonic nanostructures.


Assuntos
Compostos de Cádmio/química , Lasers , Nanoestruturas/química , Compostos de Selênio/química , Semicondutores , Desenho de Equipamento , Luz , Nanotecnologia , Nanofios/química , Fótons
10.
Opt Express ; 22(23): 28653-61, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402106

RESUMO

We have investigated second harmonic generation (SHG) from Ag-coated LiNbO3(LN) core-shell nanocuboids and found that giant SHG can occur via deliberately designed double plasmonic resonances. By controlling the aspect ratio, we can tune fundamental wave (FW) and SHG signal to match the longitudinal and transverse plasmonic modes simultaneously, and achieve giant enhancement of SHG by 3 × 10(5) in comparison to a bare LN nanocuboid and by about one order of magnitude to the case adopting only single plasmonic resonance. The underlying key physics is that the double-resonance nanoparticle enables greatly enhanced trapping and harvesting of incident FW energy, efficient internal transfer of optical energy from FW to the SHG signal, and much improved power to transport the SHG energy from the nanoparticle to the far-field region. The proposed double-resonance nanostructure can serve as an efficient subwavelength coherent light source through SHG and enable flexible engineering of light-matter interaction at nanoscale.


Assuntos
Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos , Modelos Teóricos , Nióbio/química , Análise Numérica Assistida por Computador , Óxidos/química , Processamento de Sinais Assistido por Computador , Prata/química
11.
Adv Biol (Weinh) ; 7(6): e2200293, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36642820

RESUMO

Immunotherapy has become a mainstay of cancer therapy. Since chimeric antigen receptor (CAR) T immunotherapy achieves unprecedented success in curing hematological malignancies, the possibility of it revolutionizing the paradigm of solid tumors has aroused increasing attention. However, the restricted accessibility to tumor parenchyma, the immunosuppressive tumor microenvironment, and antigen heterogeneity of solid tumors make it difficult to replicate its success. Therefore, dynamic evaluation of CAR T cells' tumor accessibility, intratumoral viability, and anti-tumor cytotoxicity is necessary to facilitate its translation to solid tumors. Besides, real-timely imaging above events in vivo can help evaluate therapeutic responses and optimize CAR T immunotherapy for solid tumors. Nuclear imaging, including positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging, is frequently applied for evaluating adoptive cell therapies owing to its excellent sensitivity, high tissue penetration, and great translation potential. In addition, quantitative analysis can be performed in dynamic and noninvasive patterns. This review focuses on recent advances in PET/SPECT technologies and imaging probes in monitoring CAR T cells' migration, viability, and cytotoxicity to solid tumors post-administration. Prospects of what should be done in the next stage to promote CAR T therapy's application in solid tumors are also discussed.


Assuntos
Antineoplásicos , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Distribuição Tecidual , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T , Linfócitos T/metabolismo , Tomografia Computadorizada por Raios X , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imunoterapia/efeitos adversos , Microambiente Tumoral
12.
Small ; 8(9): 1355-9, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22378595

RESUMO

Loss issues are fundamentally crucial for the application of surface plasmon polaritons (SPPs). In this study the amplified spontaneous emission (ASE) of SPPs in a typical Kretschmann configuration is observed and shows an unusually broadened angular response with increased pump intensity. Theoretical models are further developed to verify the results and understand the amplification of SPPs in Fourier space.

13.
Cell Immunol ; 278(1-2): 152-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22982671

RESUMO

Adipose tissue-derived stem cells (ADSC) have been shown to possess stem cell properties such as transdifferentiation, self-renewal and therapeutic potential. However, the property of ADSC to accommodate immune system is still unknown. In this study, ADSC were cocultured with allogenetic dendritic cells (DC), and then treated DC were mixed with allogenetic CD4+ T cells. The results demonstrated that ADSC could downregulate costimulatory molecules, including CD80, CD83, CD86, and cytokine secretion such as interleukin (IL)-12 and tumor necrosis factor (TNF)-α, while upregulate indoleamine-2,3-dioxygenase (IDO) of allogenetic DC. In addition, treated DC could inhibit CD4+ T cell activation and naïve T cells toward Th1 polarization. The results suggest that ADSC could negatively modulate immunity and induce immune tolerance, which provide a promising strategy in transplantation or autoimmune disease.


Assuntos
Tecido Adiposo/imunologia , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica , Células-Tronco/imunologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Adulto , Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Comunicação Celular/genética , Diferenciação Celular/imunologia , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Pessoa de Meia-Idade , Cultura Primária de Células , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
14.
Opt Express ; 20(4): 3948-53, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418151

RESUMO

We study Cerenkov-type second-harmonic generation in a two-dimensional quasi-periodically poled LiNbO3 crystal. We employ a new geometry of interaction to observe simultaneous emission of multi-directional nonlinear Cerenkov radiation with comparable intensities. This opens a way to control the angle of Cerenkov emission by tailoring the nonlinearity of the material, which is otherwise intrinsically defined by dielectric constants of the medium and their dispersion.

15.
J Mater Sci Mater Med ; 23(8): 2001-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22584823

RESUMO

A bioartificial liver bioreactor requires a bifunctional hollow fiber that is hemocompatible on one side and cytocompatible on the other side. In this study, we developed a single-layer skin polyethersulfone (PES) hollow fiber with smooth inner surface and rough/porous outer surface for an artificial liver bioreactor. The hemocompatibility of the inner surface was evaluated by hemolysis, complement activation and clotting time. The cytocompatibility of the outer surface with HepG2 cells was examined by morphology, proliferation and liver-specific functions. The inner surface of the PES hollow fiber exhibited lower hemolysis and complement activation than cellulose acetate (CA) hollow fiber and a prolonged blood coagulation time. HepG2 cells readily adhered to the outer surfaces of the PES hollow fibers, and proliferated to form multicellular aggregates with time. Furthermore, HepG2 cells cultured on the outer surface of the PES hollow fiber exhibited higher proliferation ability and liver-specific functions than those grown on the CA hollow fiber. These results suggest that the single-layer skin PES hollow fiber is a bifunctional hollow fiber with good hemocompatibility on the inner side and cytocompatibility on the outer side. Thus, porous and single-layer skin PES hollow fibers may have potential as materials for an artificial liver bioreactor.


Assuntos
Reatores Biológicos , Hepatócitos/citologia , Hepatócitos/fisiologia , Fígado Artificial , Polímeros/química , Pele Artificial , Sulfonas/química , Linhagem Celular , Proliferação de Células , Humanos , Porosidade , Desenho de Prótese
16.
Oncol Lett ; 24(2): 281, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35814830

RESUMO

Long non-coding RNAs (lncRNAs) are important biological factors that contribute to the initiation and progression of different types of cancer, including gastric, bladder and colorectal cancer. Small nucleolar RNA host gene 3 (SNHG3) has been implicated in prostate cancer (PCa) progression. However, the expression pattern and function of SNHG3 in PCa remain unclear, impeding the development of novel treatment strategies for this cancer. The present study aimed to investigate a combination of molecular and biochemical approaches to determine the role of SNHG3 in patients at different stages of disease, and elucidate the pathway by which SNHG3 affects PCa progression. A Cell Counting Kit-8 assay was used to assess cell proliferation. Transwell assays were used to analyze cell migration and invasion. Reverse transcription-quantitative PCR and western blotting were used to evaluate the expression levels of RNAs and proteins, respectively. The results demonstrated that SNHG3 expression was upregulated in PCa tissues downloaded from The Cancer Genome Atlas database, which was associated with poor prognosis. Furthermore, cell proliferation, migration and invasion were significantly inhibited following SNHG3 knockdown in vitro, the effects of which were reversed following overexpression of SNHG3 in PCa cells. Bioinformatic analysis revealed that microRNA (miRNA/miR)-1827 was a downstream target of SNHG3. The direct interaction between SNHG3 and miR-1827 was validated via the dual-luciferase reporter and RNA immunoprecipitation assays. Pearson's correlation analysis demonstrated that SNHG3 expression was negatively correlated with miR-1827 expression at different stages of PCa. Furthermore, rescue assays indicated that cotransfection with small interfering-SNHG3 and miR-1827 inhibitor reversed the effects of SNHG3 knockdown on cell proliferation, migration and invasion. In addition, SNHG3 knockdown in vivo suppressed tumor growth. Notably, lncRNA SNHG3 promoted PCa progression through miR-1827 via the Wnt/AKT/mTOR pathway. Taken together, the results of the present study suggest that SNHG3 promotes PCa progression by sponging miR-1827, indicating that SNHG3 may be a promising diagnostic and therapeutic target of PCa.

17.
Biomed Pharmacother ; 146: 112570, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34959114

RESUMO

We developed an innovative method to include quercetin into alpha-calcium sulphate hemihydrate/nano-hydroxyapatite (α-CSH/n-HA), to prepare a novel quercetin-containing α-CSH/n-HA composite (Q-α-CSH/n-HA). The physicochemical properties, and ability of Q-α-CSH/n-HA to promote cell proliferation, migration, and osteogenic differentiation of bone marrow stem cells (BMSCs) in vitro were examined. Further, the potential of Q-α-CSH/n-HA to promote bone defect repair was studied using a Sprague-Dawley rat model of critical tibial defects. Imaging was conducted by radiography and micro-CT, and bone defect repairs were observed by histopathological staining. Addition of quercetin clearly increased the porosity of the degraded composite, which elevated the cell proliferation rate, migration ability, osteogenesis differentiation, and mineralisation of BMSCs. Further, quercetin-containing composite increased the expression levels of OSX, RUNX2, OCN, ALP, BMP-2, OPN, BSP, SMAD2, and TGF-ß in BMSCs, while it downregulated TNF-α. X-ray and micro-CT imaging showed that the quercetin-containing composite significantly enhanced bone defect repair and new bone in formation. Haematoxylin and eosin, Goldner, and Safranin O staining also showed that quercetin significantly increased new bone generation and promoted composite degradation and absorption. Moreover, immunofluorescence assay revealed that quercetin significantly increased the number of RUNX2/OSX/OCN-positive cells. Overall, our data demonstrate that Q-α-CSH/n-HA has excellent biocompatibility, bone conductivity, and osteo-induction performance in vitro and mediates enhanced overall repair effects and bone reconstruction in vivo, indicating that it is a promising artificial bone graft to promote bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Sulfato de Cálcio/farmacologia , Osteogênese/efeitos dos fármacos , Quercetina/farmacologia , Tíbia/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Durapatita/química , Masculino , Ratos , Ratos Sprague-Dawley , Células-Tronco/efeitos dos fármacos
18.
Opt Lett ; 36(18): 3696-8, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21931436

RESUMO

We have demonstrated super quasi-phase matching (QPM) in a super periodically poled lithium niobate (PPLN), which is composed of multiple ordinary PPLN cells. When super QPM is achieved, the slight phase mismatch in each PPLN cell can be further compensated for, and the relevant second harmonic generation is facilitated greatly. This mechanism provides an insightful means to relieve the limitation imposed by sample fabrication inaccuracy and will open up a promising avenue toward highly efficient nonlinear interactions.

19.
Mater Sci Eng C Mater Biol Appl ; 131: 112496, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857282

RESUMO

To improve the osteoinductivity, antibacterial activity, and clinical application of calcium sulfate hemihydrate (CSH), carboxymethyl chitosan zinc (CMCS-Zn) and α-CSH were prepared using different mass ratios. The setting time and injectability of the CMCS-Zn/α-CSH composite were increased with increasing CMCS-Zn content. After adding different amounts of CMCS-Zn to α-CSH, the fine lamellar structure of CMCS-Zn was found by scanning electron microscopy (SEM), which is evenly distributed in the matrix of α-CSH. With the increase of CMCS-Zn, the pores on the surface gradually increased. After mixing CMCS-Zn and α-CSH, no new phase was measured by X-ray diffraction (XRD) and Fourier transform (FTIR) spectroscopy. The degradation rate of CMCS-Zn/α-CSH decreased with increasing CMCS-Zn content, and the pH was stable during the degradation process. The release of Zn2+ increased with increasing CMCS-Zn content, while the release of Ca2+ decreased. Extracts of CMCS-Zn/α-CSH composites up-regulated the osteoinduction and migration of rat bone marrow stem cells. The antibacterial ability of CMCS-Zn/α-CSH was evaluated as a function of CMCS-Zn content. In the rat bone defect model, 5% CMCS-Zn/α-CSH group revealed a higher volume and density of trabeculae by micro-CT 8 weeks after the operation. Therefore, CMCS-Zn/α-CSH was demonstrated to be an adjustable, degradable, substitute biomaterial (with osteogenesis-promoting effects) for use in bone defects, which also has antibacterial activity that can suppress bone infection.


Assuntos
Sulfato de Cálcio , Quitosana , Animais , Materiais Biocompatíveis/farmacologia , Osteogênese , Ratos , Zinco
20.
Opt Express ; 18(7): 7288-99, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20389750

RESUMO

A versatile and accurate approach that combines a numerical iteration technique and a transfer-matrix method (TMM) is developed to solve the general problem of second harmonic generation (SHG) with pump depletion in quasi-phase-matched (QPM) nonlinear optical structures. We derive the iterative formulae from the nonlinear coupled wave equations and obtain the intensity distribution of fundamental wave and second harmonic wave by TMM. The approach shows quick numerical convergence of iteration and maintains perfect conservation of total energy. The simulation results show that the model coincides with the one under undepleted pump approximation very well when the SHG efficiency is small (well below 15%) and agrees very well with the effective nonlinear susceptibility model in handling general SHG problems even when the conversion efficiency is high up to 100%. Our method is applicable to general nonlinear optical structures, such as periodic, quasi-periodic, and aperiodic QPM structures, photonic crystals, and micro-cavities that might involve complicated modulation on the linear and nonlinear susceptibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA