Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Virol ; 96(1): e29396, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235848

RESUMO

The RNA-dependent RNA polymerase (RdRp) is a crucial element in the replication and transcription of RNA viruses. Although the RdRps of lethal human coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) have been extensively studied, the molecular mechanism of the catalytic subunit NSP12, which is involved in pathogenesis, remains unclear. In this study, the biochemical and cell biological results demonstrate the interactions between SARS-CoV-2 NSP12 and seven host proteins, including three splicing factors (SLU7, PPIL3, and AKAP8). The entry efficacy of SARS-CoV-2 considerably decreased when SLU7 or PPIL3 was knocked out, indicating that abnormal splicing of the host genome was responsible for this occurrence. Furthermore, the polymerase activity and stability of SARS-CoV-2 RdRp were affected by the three splicing factors to varying degrees. In addition, NSP12 and its homologues from SARS-CoV and MERS-CoV suppressed the alternative splicing of cellular genes, which were influenced by the three splicing factors. Overall, our research illustrates that SARS-CoV-2 NSP12 can engage with various splicing factors, thereby impacting virus entry, replication, and gene splicing. This not only improves our understanding of how viruses cause diseases but also lays the foundation for the development of antiviral therapies.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , RNA Polimerase Dependente de RNA/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Fatores de Processamento de RNA
2.
Dalton Trans ; 52(36): 12958-12967, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37647024

RESUMO

Rare earth-doped metal oxide thin films exhibit remarkable potential for application in anti-counterfeiting, owing to their exceptional fluorescent properties. However, the existing fabrication techniques for these rare earth-doped luminescent thin films are predominantly complex and necessitate high-temperature conditions. In light of this issue, we present a low-temperature method for in situ fabrication of luminescent Ca1-xMoO4:Eux3+ and Sr1-xMoO4:Tbx3+ nanocrystal thin films by a solution deposition process. The developed method has the advantages of simple operation, rapid and low-temperature synthesis. The optimal chemical compositions of molybdate-based luminescent films are Ca0.90MoO4:Eu0.103+ and Sr0.90MoO4:Tb0.103+. Moreover, we evaluate the practical feasibility of luminescent nanoparticle films in the field of anti-counterfeiting by combining the unique fluorescent properties of rare earth ions and designing customized fluorescent patterns.

3.
Cell Rep ; 33(3): 108294, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086053

RESUMO

The UbiA superfamily of intramembrane prenyltransferases catalyzes an isoprenyl transfer reaction in the biosynthesis of lipophilic compounds involved in cellular physiological processes. Digeranylgeranylglyceryl phosphate (DGGGP) synthase (DGGGPase) generates unique membrane core lipids for the formation of the ether bond between the glycerol moiety and the alkyl chains in archaea and has been confirmed to be a member of the UbiA superfamily. Here, the crystal structure is reported to exhibit nine transmembrane helices along with a large lateral opening covered by a cytosolic cap domain and a unique substrate-binding central cavity. Notably, the lipid-bound states of this enzyme demonstrate that the putative substrate-binding pocket is occupied by the lipidic molecules used for crystallization, indicating the binding mode of hydrophobic substrates. Collectively, these structural and functional studies provide not only an understanding of lipid biosynthesis by substrate-specific lipid-modifying enzymes but also insights into the mechanisms of lipid membrane remodeling and adaptation.


Assuntos
Proteínas Arqueais/metabolismo , Glicerofosfatos/biossíntese , Methanocaldococcus/enzimologia , Archaea/enzimologia , Proteínas Arqueais/biossíntese , Proteínas Arqueais/genética , Glicerofosfatos/metabolismo , Lipídeos de Membrana , Methanocaldococcus/metabolismo , Estrutura Secundária de Proteína
4.
Cell Res ; 27(11): 1378-1391, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28961231

RESUMO

The divergence of archaea, bacteria and eukaryotes was a fundamental step in evolution. One marker of this event is a major difference in membrane lipid chemistry between these kingdoms. Whereas the membranes of bacteria and eukaryotes primarily consist of straight fatty acids ester-bonded to glycerol-3-phosphate, archaeal phospholipids consist of isoprenoid chains ether-bonded to glycerol-1-phosphate. Notably, the mechanisms underlying the biosynthesis of these lipids remain elusive. Here, we report the structure of the CDP-archaeol synthase (CarS) of Aeropyrum pernix (ApCarS) in the CTP- and Mg2+-bound state at a resolution of 2.4 Å. The enzyme comprises a transmembrane domain with five helices and cytoplasmic loops that together form a large charged cavity providing a binding site for CTP. Identification of the binding location of CTP and Mg2+ enabled modeling of the specific lipophilic substrate-binding site, which was supported by site-directed mutagenesis, substrate-binding affinity analyses, and enzyme assays. We propose that archaeol binds within two hydrophobic membrane-embedded grooves formed by the flexible transmembrane helix 5 (TM5), together with TM1 and TM4. Collectively, structural comparisons and analyses, combined with functional studies, not only elucidated the mechanism governing the biosynthesis of phospholipids with ether-bonded isoprenoid chains by CTP transferase, but also provided insights into the evolution of this enzyme superfamily from archaea to bacteria and eukaryotes.


Assuntos
Aeropyrum/enzimologia , Proteínas Arqueais/química , Transferases/química , Proteínas Arqueais/metabolismo , Sítios de Ligação , Citidina Trifosfato/química , Lipídeos de Membrana/biossíntese , Metais/química , Modelos Moleculares , Thermotoga maritima/enzimologia , Transferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA