Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7900): 259-264, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264756

RESUMO

Ultra-scaled transistors are of interest in the development of next-generation electronic devices1-3. Although atomically thin molybdenum disulfide (MoS2) transistors have been reported4, the fabrication of devices with gate lengths below 1 nm has been challenging5. Here we demonstrate side-wall MoS2 transistors with an atomically thin channel and a physical gate length of sub-1 nm using the edge of a graphene layer as the gate electrode. The approach uses large-area graphene and MoS2 films grown by chemical vapour deposition for the fabrication of side-wall transistors on a 2-inch wafer. These devices have On/Off ratios up to 1.02 × 105 and subthreshold swing values down to 117 mV dec-1. Simulation results indicate that the MoS2 side-wall effective channel length approaches 0.34 nm in the On state and 4.54 nm in the Off state. This work can promote Moore's law of the scaling down of transistors for next-generation electronics.

2.
Nano Lett ; 24(4): 1231-1237, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251914

RESUMO

Ferroelectricity, especially the Si-compatible type recently observed in hafnia-based materials, is technologically useful for modern memory and logic applications, but it is challenging to differentiate intrinsic ferroelectric polarization from the polar phase and oxygen vacancy. Here, we report electrically controllable ferroelectricity in a Hf0.5Zr0.5O2-based heterostructure with Sr-doped LaMnO3, a mixed ionic-electronic conductor, as an electrode. Electrically reversible extraction and insertion of an oxygen vacancy into Hf0.5Zr0.5O2 are macroscopically characterized and atomically imaged in situ. Utilizing this reversible process, we achieved multilevel polarization states modulated by the electric field. Our study demonstrates the usefulness of the mixed conductor to repair, create, manipulate, and utilize advanced ferroelectric functionality. Furthermore, the programmed ferroelectric heterostructures with Si-compatible doped hafnia are desirable for the development of future ferroelectric electronics.

3.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400251

RESUMO

A surface-enhanced Raman scattering (SERS) method for measuring nitrate nitrogen in aquaculture water was developed using a substrate of ß-cyclodextrin-modified gold nanoparticles (SH-ß-CD@AuNPs). Addressing the issues of low sensitivity, narrow linear range, and relatively poor selectivity of single metal nanoparticles in the SERS detection of nitrate nitrogen, we combined metal nanoparticles with cyclodextrin supramolecular compounds to prepare a AuNPs substrate enveloped by cyclodextrin, which exhibits ultra-high selectivity and Raman activity. Subsequently, vanadium(III) chloride was used to convert nitrate ions into nitrite ions. The adsorption mechanism between the reaction product benzotriazole (BTAH) of o-phenylenediamine (OPD) and nitrite ions on the SH-ß-CD@AuNPs substrate was studied through SERS, achieving the simultaneous detection of nitrate nitrogen and nitrite nitrogen. The experimental results show that BTAH exhibits distinct SERS characteristic peaks at 1168, 1240, 1375, and 1600 cm-1, with the lowest detection limits of 3.33 × 10-2, 5.84 × 10-2, 2.40 × 10-2, and 1.05 × 10-2 µmol/L, respectively, and a linear range of 0.1-30.0 µmol/L. The proposed method provides an effective tool for the selective and accurate online detection of nitrite and nitrate nitrogen in aquaculture water.

4.
Nano Lett ; 23(22): 10196-10204, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37926956

RESUMO

Low-power electronic devices play a pivotal role in the burgeoning artificial intelligence era. The study of such devices encompasses low-subthreshold swing (SS) transistors and neuromorphic devices. However, conventional field-effect transistors (FETs) face the inherent limitation of the "Boltzmann tyranny", which restricts SS to 60 mV decade-1 at room temperature. Additionally, FET-based neuromorphic devices lack sufficient conductance states for highly accurate neuromorphic computing due to a narrow memory window. In this study, we propose a pioneering PZT-enabled MoS2 floating gate transistor (PFGT) configuration, demonstrating a low SS of 46 mV decade-1 and a wide memory window of 7.2 V in the dual-sweeping gate voltage range from -7 to 7 V. The wide memory window provides 112 distinct conductance states for PFGT. Moreover, the PFGT-based artificial neural network achieves an outstanding facial-recognition accuracy of 97.3%. This study lays the groundwork for the development of low-SS transistors and highly energy efficient artificial synapses utilizing two-dimensional materials.

5.
Anal Chem ; 95(8): 4043-4049, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36800209

RESUMO

Sensing sensitivity is one of the crucial parameters for quartz crystal microbalance (QCM) sensors. Herein, we study the overtone mass sensitivity of a QCM sensor with an asymmetric N-M type electrode configuration. In order to overcome the deficiency that the sensitivity of the QCM sensor with an asymmetric electrode cannot be calculated by Sauerbrey's equation, we design the electrochemical electrodeposition experiments to measure it. The measurement results of overtone mass sensitivities of three 3.1-5.1 and three 4.1-5.1 QCMs are 5.418, 5.629, and 5.572 Hz/ng and 4.155, 4.456, and 3.982 Hz/ng in the third overtone mode and 9.208, 9.474, and 9.243 Hz/ng and 6.811, 7.604, and 6.588 Hz/ng in the fifth overtone mode, respectively. The overtone mass sensitivities of three 5.1-5.1 QCMs are 3.210, 3.439, and 3.540 Hz/ng in the third overtone mode and 5.396, 5.010, and 5.707 Hz/ng in the fifth overtone mode, respectively. These results show that the overtone mass sensitivity of the N-M type QCM is larger than that of QCMs with symmetric electrodes, and the fifth overtone mass sensitivity is higher than the third overtone mass sensitivity for the same type of QCM. The above results strongly confirm that the overtone mass sensitivity of a QCM sensor with an asymmetric N-M electrode structure significantly enhances its sensing performance, and it will greatly meet the demands for high precision measurement of QCM sensors in applications.

6.
Nanotechnology ; 34(47)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37586343

RESUMO

Memristor-based neuromorphic computing is expected to overcome the bottleneck of von Neumann architecture. An artificial synaptic device with continuous conductance variation is essential for implementing bioinspired neuromorphic systems. In this work, a memristor based on Pt/LiSiOx/TiN structure is developed to emulate an artificial synapse, which shows non-volatile multilevel resistance state memory behavior. Moreover, the high nonlinearity caused by abrupt changes in the set process is optimized by adjusting the initial resistance. 100 levels of continuously modulated conductance states are achieved and the nonlinearity factors are reduced to 1.31. The significant improvement is attributed to the decrease in the Schottky barrier height and the evolution of the conductive filaments. Finally, due to the improved linearity of the long-term potentiation/long-term depression behaviors in LiSiOxmemristor, a robust recognition rate (∼94.58%) is achieved for pattern recognition with the modified National Institute of Standards and Technology handwriting database. The Pt/LiSiOx/TiN memristor shows significant potential in high-performance multilevel data storage and neuromorphic computing systems.

7.
Compos Sci Technol ; : 110123, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38620137

RESUMO

In order to reduce the damage to people's health from diseases that attack the respiratory system such as COVID-19, asthma, and pneumonia, it is desired that patients' breathing can be monitored and alerted in real-time. The emergence of wearable health detection sensing devices has provided a relatively good response to this problem. However, there are still problems such as complex structure and poor performance. This paper introduces a laser-induced graphene (LIG) device that is attached to PDMS. The LIG is produced by laser irradiation of Nomex and subsequently transferred and attached to the PDMS. After being tested, it has demonstrated high sensitivity, stable tensile performance, good acoustic performance, excellent thermal stability, and other favorable properties. Notably, its gauge factor (GF) value can reach 721.67, which is quite impressive. Additionally, it is capable of emitting an alarm sound with an SPL close to 60 dB when receiving signals within the range of 5-20 kHz. The device realizes mechanical sensing and acoustic functions in one chip, and has a high application value in applications that need to combine sensing and early warning.

8.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850470

RESUMO

Human-Machine Interface (HMI) plays a key role in the interaction between people and machines, which allows people to easily and intuitively control the machine and immersively experience the virtual world of the meta-universe by virtual reality/augmented reality (VR/AR) technology. Currently, wearable skin-integrated tactile and force sensors are widely used in immersive human-machine interactions due to their ultra-thin, ultra-soft, conformal characteristics. In this paper, the recent progress of tactile and force sensors used in HMI are reviewed, including piezoresistive, capacitive, piezoelectric, triboelectric, and other sensors. Then, this paper discusses how to improve the performance of tactile and force sensors for HMI. Next, this paper summarizes the HMI for dexterous robotic manipulation and VR/AR applications. Finally, this paper summarizes and proposes the future development trend of HMI.


Assuntos
Realidade Aumentada , Robótica , Realidade Virtual , Humanos , Pele , Tecnologia
9.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36991702

RESUMO

Sensors enable the detection of physiological indicators and pathological markers to assist in the diagnosis, treatment, and long-term monitoring of diseases, in addition to playing an essential role in the observation and evaluation of physiological activities. The development of modern medical activities cannot be separated from the precise detection, reliable acquisition, and intelligent analysis of human body information. Therefore, sensors have become the core of new-generation health technologies along with the Internet of Things (IoTs) and artificial intelligence (AI). Previous research on the sensing of human information has conferred many superior properties on sensors, of which biocompatibility is one of the most important. Recently, biocompatible biosensors have developed rapidly to provide the possibility for the long-term and in-situ monitoring of physiological information. In this review, we summarize the ideal features and engineering realization strategies of three different types of biocompatible biosensors, including wearable, ingestible, and implantable sensors from the level of sensor designing and application. Additionally, the detection targets of the biosensors are further divided into vital life parameters (e.g., body temperature, heart rate, blood pressure, and respiratory rate), biochemical indicators, as well as physical and physiological parameters based on the clinical needs. In this review, starting from the emerging concept of next-generation diagnostics and healthcare technologies, we discuss how biocompatible sensors revolutionize the state-of-art healthcare system unprecedentedly, as well as the challenges and opportunities faced in the future development of biocompatible health sensors.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Inteligência Artificial , Próteses e Implantes , Atenção à Saúde
10.
Anal Chem ; 94(15): 5760-5768, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35377148

RESUMO

With the in-depth application of quartz crystal microbalance (QCM) sensors in the fields of science and engineering, there is an urgent need for QCM sensors with high mass sensitivity. The mass sensitivity of a QCM is closely related to its resonance frequency, and the high resonance frequency leads to improve its mass sensitivity. However, the resonance frequency of a QCM resonator cannot be increased all the time due to the fragility of quartz wafer and the limits of energy trapping effect. Few studies are associated with mass sensitivity of a QCM resonator under overtone modes. Herein, we propose to make a QCM resonator work in its n-th overtone (n = 3, 5, 7, 9 in this study) mode to increase its resonance frequency during operating. Thereby, the purpose of improving QCM mass sensitivity is achieved, and the mass sensitivity of a QCM working in the n-th overtone mode can be called as n-th overtone mass sensitivity. Then, the n-th overtone mass sensitivity of a QCM sensor is measured by an electrodeposition method. The experimental results show that the n-th overtone mass sensitivity of a QCM is a bit more than n times that of the fundamental mass sensitivity, and it is consistent with the theoretical calculation results. The application of overtone mass sensitivity will greatly improve the sensitivity of QCM sensors, which is very attractive for the research fields that require QCM sensors with high sensitivity.


Assuntos
Galvanoplastia , Técnicas de Microbalança de Cristal de Quartzo , Quartzo
11.
Small ; 18(7): e2104810, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882950

RESUMO

As the aging population increases in many countries, electronic skin (e-skin) for health monitoring has been attracting much attention. However, to realize the industrialization of e-skin, two factors must be optimized. The first is to achieve high comfort, which can significantly improve the user experience. The second is to make the e-skin intelligent, so it can detect and analyze physiological signals at the same time. In this article, intelligent and multifunctional e-skin consisting of laser-scribed graphene and polyurethane (PU) nanomesh is realized with high comfort. The e-skin can be used as a strain sensor with large measurement range (>60%), good sensitivity (GF≈40), high linearity range (60%), and excellent stability (>1000 cycles). By analyzing the morphology of e-skin, a parallel networks model is proposed to express the mechanism of the strain sensor. In addition, laser scribing is also applied to etch the insulating PU, which greatly decreases the impedance in detecting electrophysiology signals. Finally, the e-skin is applied to monitor the electrocardiogram, electroencephalogram (EEG), and electrooculogram signals. A time- and frequency-domain concatenated convolution neural network is built to analyze the EEG signal detected using the e-skin on the forehead and classify the attention level of testers.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Lasers , Monitorização Fisiológica , Poliuretanos
12.
Small ; 18(12): e2106196, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322558

RESUMO

Cell mechanical forces play fundamental roles in regulating cellular responses to environmental stimulations. The shortcomings of conventional methods, including force resolution and cellular throughput, make them less accessible to mechanical heterogeneity at the single-cell level. Here, a DNA tensioner platform is introduced with high throughput (>10 000 cells per chip) and pN-level resolution. A microfluidic-based cell array is trapped on "hairpin-structured" DNA tensioners that enable transformation of the mechanical information of living cells into fluorescence signals. By using the platform, one can identify enhanced mechanical forces of drug-resistant cells as compared to their drug-sensitive counterparts, and mechanical differences between metastatic tumor cells in pleural effusion and nonmetastatic histiocytes. Further genetic analysis traces two genes, VEGFA and MINK1, that may play deterministic roles in regulating mechanical heterogeneities. In view of the ubiquity of cells' mechanical forces in the extracellular microenvironment (ECM), this platform shows wide potential to establish links of cellular mechanical heterogeneity to genetic heterogeneity.


Assuntos
DNA , Microfluídica
13.
Nanotechnology ; 32(9): 095106, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33290267

RESUMO

Glaucoma is the second leading cause of blindness in the world. Intraocular pressure (IOP) is a primary indicator of glaucoma which can be measured for the treatment of the disease. This paper presents a piezo-resistive principle pressure sensor to monitor IOP continuously and non-invasively. The sensor is designed based on the Wheatstone bridge circuit and fabricated by the spray-coating method. The hybrid nanomaterials of graphene and carbon nanotubes are introduced as sensing layers which are embedded inside the soft contact lens substrate composed of flexible polydimethyl siloxane (PDMS) and parylene. The sensing performance is discussed followed by a brief description of our sensor design and fabrication. Tests on a PDMS eyeball model indicate that it has a high sensitivity of 36.01 µV mmHg-1. Also, the frequency response and the ability to track dynamic pressure change cycles are demonstrated in normal IOP variation range from 9 to 34 mmHg. It shows good repeatability and linearity, and can accurately track fluctuating IOP. Thus, this sensor, with its ease of fabrication and simple design, as well as allowance for continuous pressure measurement, offers a promising approach for IOP monitoring in clinical diagnosis of glaucoma.

14.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834039

RESUMO

COVID-19 is a highly contagious human infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the war with the virus is still underway. Since no specific drugs have been made available yet and there is an imbalance between supply and demand for vaccines, early diagnosis and isolation are essential to control the outbreak. Current nucleic acid testing methods require high sample quality and laboratory conditions, which cannot meet flexible applications. Here, we report a laser-induced graphene field-effect transistor (LIG-FET) for detecting SARS-CoV-2. The FET was manufactured by different reduction degree LIG, with an oyster reef-like porous graphene channel to enrich the binding point between the virus protein and sensing area. After immobilizing specific antibodies in the channel, the FET can detect the SARS-CoV-2 spike protein in 15 min at a concentration of 1 pg/mL in phosphate-buffered saline (PBS) and 1 ng/mL in human serum. In addition, the sensor shows great specificity to the spike protein of SARS-CoV-2. Our sensors can realize fast production for COVID-19 rapid testing, as each LIG-FET can be fabricated by a laser platform in seconds. It is the first time that LIG has realized a virus sensing FET without any sample pretreatment or labeling, which paves the way for low-cost and rapid detection of COVID-19.


Assuntos
Técnicas Biossensoriais/métodos , Teste para COVID-19/métodos , COVID-19/diagnóstico , Grafite/química , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/análise , Transistores Eletrônicos/virologia , COVID-19/virologia , Técnicas de Laboratório Clínico , Humanos , Lasers , Microscopia Confocal , Microscopia Eletrônica de Varredura
15.
Small ; 16(15): e1901124, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31364311

RESUMO

Recently, advancement in materials production, device fabrication, and flexible circuit has led to the huge prosperity of wearable electronics for human healthcare monitoring and medical diagnosis. Particularly, with the emergence of 2D materials many merits including light weight, high stretchability, excellent biocompatibility, and high performance are used for those potential applications. Thus, it is urgent to review the wearable electronics based on 2D materials for the detection of various human signals. In this work, the typical graphene-based materials, transition-metal dichalcogenides, and transition metal carbides or carbonitrides used for the wearable electronics are discussed. To well understand the human physiological information, it is divided into two dominated categories, namely, the human physical and the human chemical signals. The monitoring of body temperature, electrograms, subtle signals, and limb motions is described for the physical signals while the detection of body fluid including sweat, breathing gas, and saliva is reviewed for the chemical signals. Recent progress and development toward those specific utilizations are highlighted in the Review with the representative examples. The future outlook of wearable healthcare techniques is briefly discussed for their commercialization.


Assuntos
Monitorização Fisiológica/instrumentação , Dispositivos Eletrônicos Vestíveis , Temperatura Corporal , Grafite , Humanos , Suor
16.
Nanotechnology ; 31(9): 095203, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31731285

RESUMO

Two-dimensional (2D) materials such as graphene and MoS2 have shown great potential in photodetection platforms. Photoresponsivity and photoresponse speed are two important parameters illustrating photodetector performances. Although various hybrid structures have been designed, the trade-off between photoresponsivity and photoresponse speed has not been well balanced. In this work, MoS2 film and In(OH) x Se nanoparticles are combined together to form the hybrid phototransistor. Utilizing both the photoconducting and photogating effects, the photoresponsivity increases about one order of magnitude with a value of 102 A W-1. The ratio of photocurrent and dark current increases to a value of 104. Considering the slow photo recovery speed, a 2 ms gate voltage pulse is applied after turning off the light, which results in a complete recovery of current. The photoconducting effect, photogating effect and gate voltage stimulation simultaneously promote the superior comprehensive photoresponse performances. This method can be further explored and utilized for realizing high performance photodetectors.

17.
Nanotechnology ; 31(5): 055501, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31484166

RESUMO

Humidity sensors based on flexible sensitive nanomaterials are very attractive in noncontact healthcare monitoring. However, the existing humidity sensors have some shortcomings such as limited sensitivity, narrow relative humidity (RH) range, and a complex process. Herein, we show that a tin sulphide (SnS) nanoflakes-based sensor presents high humidity sensing behaviour both in rigid and flexible substrate. The sensing mechanism based on the Schottky nature of a SnS-metal contact endows the as-fabricated sensor with a high response of 2491000% towards a wide RH range from 3% RH to 99% RH. The response and recovery time of the sensor are 6 s and 4 s, respectively. Besides, the flexible SnS nanoflakes-based humidity sensor with a polyimide substrate can be well attached to the skin and exhibits stable humidity sensing performance in the natural flat state and under bending loading. Moreover, the first-principles analysis is performed to prove the high specificity of SnS to the moisture (H2O) in the air. Benefiting from its promising advantages, we explore some application of the SnS nanoflakes-based sensors in detection of breathing patterns and non-contact finger tips sensing behaviour. The sensor can monitor the respiration pattern of a human being accurately, and recognize the movement of the fingertip speedily. This novel humidity sensor shows great promising application in physiological and physical monitoring, portable diagnosis system, and noncontact interface localization.


Assuntos
Técnicas Biossensoriais/instrumentação , Umidade , Nanoestruturas/química , Sulfetos/química , Compostos de Estanho/química , Água/química , Humanos , Monitorização Ambulatorial/instrumentação , Nanoestruturas/ultraestrutura , Tempo de Reação , Dióxido de Silício/química , Propriedades de Superfície
18.
Nanotechnology ; 30(34): 345503, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31048568

RESUMO

Room-temperature NO2 gas sensors are fabricated by employing tin oxide (SnO2) nanofibers (NFs) as sensing layers and low-dimension carbon nanomaterials, including single-walled carbon nanotubes (SWCNTs) and reduced graphene oxide (rGO), as conductive interdigital electrodes (IDEs). The morphology characteristics and gas sensing performance of rGO IDEs-SnO2 and SWCNTs IDEs-SnO2 gas sensors have been investigated. The results demonstrate that the response of rGO IDEs based sensors achieves 90.0% after been exposed to 12 ppm NO2, which is superior to the responses of Ti/Au and SWCNTs IDEs based sensors (55.1% and 16.7%, respectively). The rGO IDEs-SnO2 sensor exhibits excellent sensitivity, large recovery capability and repeatability, and high selectivity at room temperature. The sensing mechanism of such prominent performance has also been analyzed, revealing that the outstanding properties could be attributed to a large number of active adsorption sites, the formation of a p-n heterojunction and a large effective contact area between the two-dimensional rGO nanosheets and the tube-shaped SnO2 NFs. This work helps to build up a potential platform to explore effective electrodes for future novel NO2 gas sensors in practical gas sensing applications.

19.
Phys Chem Chem Phys ; 21(27): 14713-14721, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31218307

RESUMO

In this study, the structural, electronic and optical properties of a tungsten disulfide (WS2) hybrid with indium-gallium-zinc-oxide (IGZO) heterostructures were investigated based on density functional theory (DFT) calculations. According to the results of binding energy, charge density difference and electron localization function of heterostructures, we found that the WS2 and IGZO monolayers were bound to each other via non-covalent interactions with large binding energy. The calculated results illustrate that the AAii stacking pattern has an indirect band gap of 1.643 eV, while AAi and AB stacking patterns have maximum direct-gaps of 1.102 eV and 1.234 eV, respectively. Under an external E-field and mechanical strain, the response of the energy gap of the WS2/IGZO heterostructure monotonically decreased over a wide range, even with a semiconductor-metal transition. In addition, we investigated the optical properties of the heterostructure and found that it exhibits a much broad spectral responsivity (from visible light to deep UV light) and a more pronounced optical absorption than WS2 and IGZO monolayers. Moreover, the tensile strain could weaken the photoresponse of the heterostructure to the UV light and enhance the response for the visible light; under compressive strain, the heterostructure showed a strong absorption peak in the UV light. Meanwhile, a red-shift was observed under an external strain. All these unique and tunable properties indicate that the WS2/IGZO heterostructure is a good candidate for nanoelectronic and photoelectronic devices, such as field-effect transistors, flexible sensors, photodetectors and photonic devices.

20.
Small ; 14(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205799

RESUMO

Metal oxide-based resistive random access memory (RRAM) has attracted a lot of attention for its scalability, temperature robustness, and potential to achieve machine learning. However, a thick oxide layer results in relatively high program voltage while a thin one causes large leakage current and a small window. Owing to these fundamental limitations, by optimizing the oxide layer itself a novel interface engineering idea is proposed to reduce the programming voltage, increase the uniformity and on/off ratio. According to this idea, a molybdenum disulfide (MoS2 )-palladium nanoparticles hybrid structure is used to engineer the oxide/electrode interface of hafnium oxide (HfOx )-based RRAM. Through its interface engineering, the set voltage can be greatly lowered (from -3.5 to -0.8 V) with better uniformity under a relatively thick HfOx layer (≈15 nm), and a 30 times improvement of the memory window can be obtained. Moreover, due to the atomic thickness of MoS2 film and high transmittance of ITO, the proposed RRAM exhibits high transparency in visible light. As the proposed interface-engineering RRAM exhibits good transparency, low SET voltage, and a large resistive switching window, it has huge potential in data storage in transparent circuits and wearable electronics with relatively low supply voltage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA