Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2307293, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047540

RESUMO

Molybdenum disulfide (MoS2 ) has gained significant attention as a promising catalyst for hydrogen evolution reaction (HER). The catalytic performance of MoS2 can be enhanced by either altering its structure or regulating external conditions. In this study, a novel approach combining the introduction of sulfur vacancy (VS ) and biaxial tensile strain to create more active sites and modulate the band structure of monolayer MoS2 is proposed. To achieve the desired strain level, nano-cones (NCs) array substrates facilely fabricated by dip-pen nanolithography (DPN) are employed. The magnitude of the applied tensile strain can be finely tuned via adjusting the height of the NCs. Furthermore, on-chip electrochemical devices are constructed based on artificial structures, enabling precise optimization of HER performance of MoS2 through the synergistic effect of VS and strain. Combined with the d-band theory, it reveals that the HER properties of VS -MoS2 are highly dependent on the degree of tensile strain. This study presents a promising avenue for the design and preparation of high-performance 2D catalysts for energy conversion and storage applications.

2.
J Phys Condens Matter ; 34(25)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35358958

RESUMO

Transition metal dichalcogenide (TMD) van der Waals (vdW) heterostructures show great potential in the exploration of novel physical phenomena and practical applications. Compared to the traditional mechanical stacking techniques, chemical vapor deposition (CVD) method exhibits more advantages in preparing TMD vdW heterostructures. CVD enables the large-scale production of high-quality materials with clean interfaces in the future. Herein, CVD methods for the synthesis of TMD vdW heterostructures are summarized. These methods are categorized in two major strategies, multi-step process and one-step process. The effects of various factors are demonstrated, including the temperature, nucleation, and precursors. Finally, the remaining challenges are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA