Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(2): 931-945, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697451

RESUMO

TDP-43 proteinopathy is linked to neurodegenerative diseases that feature synaptic loss in the cortex and hippocampus, although it remains unclear how TDP-43 regulates mature synapses. We report that, in adult mouse hippocampus, TDP-43 knockdown, but not overexpression, induces robust structural and functional damage to excitatory synapses, supporting a role for TDP-43 in maintaining mature synapses. Dendritic spine loss induced by TDP-43 knockdown is rescued by wild-type TDP-43, but not ALS/FTLD-associated mutants, suggesting a common TDP-43 functional deficiency in neurodegenerative diseases. Interestingly, M337V and A90V mutants also display dominant negative activities against WT TDP-43, partially explaining why M337V transgenic mice develop hippocampal degeneration similar to that in excitatory neuronal TDP-43 knockout mice, and why A90V mutation is associated with Alzheimer's disease. Further analyses reveal that a TDP-43 knockdown-induced reduction in GluN2A contributes to synaptic loss. Our results show that loss of TDP-43 function underlies hippocampal and cortical synaptic degeneration in TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Proteinopatias TDP-43 , Camundongos , Animais , Proteinopatias TDP-43/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Transgênicos , Hipocampo/metabolismo , Camundongos Knockout , Esclerose Lateral Amiotrófica/genética
2.
Front Cell Dev Biol ; 12: 1349379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344750

RESUMO

[This corrects the article DOI: 10.3389/fcell.2023.1187989.].

3.
Front Oncol ; 13: 1119369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845720

RESUMO

Low response rate and treatment resistance are frequent problems in the immunotherapy of tumors, resulting in the unsatisfactory therapeutic effects. Ferroptosis is a form of cell death characterized by the accumulation of lipid peroxides. In recent years, it has been found that ferroptosis may be related to the treatment of cancer. Various immune cells (including macrophages and CD8+ T cells) can induce ferroptosis of tumor cells, and synergistically enhance the anti-tumor immune effects. However, the mechanisms are different for each cell types. DAMP released in vitro by cancer cells undergoing ferroptosis lead to the maturation of dendritic cells, cross-induction of CD8+ T cells, IFN-γ production and M1 macrophage production. Thus, it activates the adaptability of the tumor microenvironment and forms positive feedback of the immune response. It suggests that induction of ferroptosis may contribute to reducing resistance of cancer immunotherapy and has great potential in cancer therapy. Further research into the link between ferroptosis and tumor immunotherapy may offer hope for those cancers that are difficult to treat. In this review, we focus on the role of ferroptosis in tumor immunotherapy, explore the role of ferroptosis in various immune cells, and discuss potential applications of ferroptosis in tumor immunotherapy.

4.
Front Cell Dev Biol ; 11: 1187989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261073

RESUMO

In recent years, the relationship between lipid metabolism and tumour immunotherapy has been thoroughly investigated. An increasing number of studies have shown that abnormal gene expression and ectopic levels of metabolites related to fatty acid synthesis or fatty acid oxidation affect tumour metastasis, recurrence, and drug resistance. Tumour immunotherapy that aims to promote an antitumour immune response has greatly improved the outcomes for tumour patients. However, lipid metabolism reprogramming in tumour cells or tumour microenvironment-infiltrating immune cells can influence the antitumour response of immune cells and induce tumor cell immune evasion. The recent increase in the prevalence of obesity-related cancers has drawn attention to the fact that obesity increases fatty acid oxidation in cancer cells and suppresses the activation of immune cells, thereby weakening antitumour immunity. This article reviews the changes in lipid metabolism in cells in the tumour microenvironment and describes the relationship between lipid metabolism reprogramming in multiple cell types and tumour immunotherapy.

5.
Cell Death Discov ; 8(1): 332, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869042

RESUMO

Lipid peroxidation-induced ferroptosis is a newly recognized type of programmed cell death. With the method of RNA sequencing, we found that irradiation (IR) markedly increased the expression of ferroptosis promotive genes, whereas reduced the expression of ferroptosis suppressive genes in murine intestine tissues, when compared with those of liver and lung tissues. By using ferroptosis inducer RSL-3 and inhibitor liproxstatin-1, we found that ferroptosis is essential for IR-induced intestinal injury. Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4) is an important component for ferroptosis execution, and we found that ACSL4 expression was significantly upregulated in irradiated intestine tissues, but not in liver or lung tissues. Antibacterial and antifungal regents reduced the expression of ASCL4 and protected against tissue injury in irradiated intestine tissues. Further studies showed that troglitazone, a ACSL4 inhibitor, succeeded to suppresses intestine lipid peroxidation and tissue damage after IR.

6.
Cell Rep ; 38(13): 110557, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354047

RESUMO

Astrocytes play critical roles in brain development and disease, but the mechanisms that regulate astrocyte proliferation are poorly understood. We report that astrocyte proliferation is bi-directionally regulated by neuronal activity via NMDA receptor (NMDAR) signaling in neurons. Prolonged treatment with an NMDAR antagonist reduced expression of cell-cycle-related genes in astrocytes in hippocampal cultures and suppressed astrocyte proliferation in vitro and in vivo, whereas neuronal activation promoted astrocyte proliferation, dependent on neuronal NMDARs. Expression of prostaglandin-endoperoxide synthase 2 (Ptgs2) is induced specifically in neurons by NMDAR activation and is required for activity-dependent astrocyte proliferation through its product, prostaglandin E2 (PGE2). NMDAR inhibition or Ptgs2 genetic ablation in mice reduced the proliferation of astrocytes and microglia induced by mild traumatic brain injury in the absence of secondary excitotoxicity-induced neuronal death. Our study defines an NMDAR-mediated signaling mechanism that allows trans-cellular control of glial proliferation by neurons in brain development and injury.


Assuntos
Neurônios , Receptores de N-Metil-D-Aspartato , Animais , Proliferação de Células , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Materials (Basel) ; 14(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809379

RESUMO

A modern Chinese ferritic/martensitic steel SIMP, is a new perspective nuclear structural material for the spallation target in accelerator driven sub-critical system. In this work, aimed at exploring the radiation resistance properties of this material, we investigate the differences between simultaneous Fe and He ions irradiation and He implantation of SIMP steel pre-irradiated by Fe self-ions. The irradiations were performed at 300 °C. The radiation-induced hardening was evaluated by nano-indentation, while the lattice disorder was investigated by transmission electron microscopy. Clear differences were found in the material microstructure after the two kinds of the ion irradiation performed. Helium cavities were observed in the co-irradiated SIMP steel, but not the case of He implantation with Fe pre-irradiation. In the same time, the size and density of Frank loops were different in the two different irradiation conditions. The reason for the different observed lattice disorders is discussed.

8.
Front Cell Dev Biol ; 9: 777989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111753

RESUMO

Excessive neutrophil extracellular trap (NET) formation is an important contributor to sepsis-induced acute lung injury (ALI). Recent reports indicate that platelets can induce neutrophil extracellular trap formation. However, the specific mechanism remains unclear. Tph1 gene, which encodes the rate-limiting enzyme for peripheral 5-hydroxytryptophan (5-HT) synthesis, was knocked out in mice to simulate peripheral 5-HT deficiency. Cecal ligation and puncture (CLP) surgery was performed to induce sepsis. We found that peripheral 5-HT deficiency reduced NET formation in lung tissues, alleviated sepsis-induced lung inflammatory injury, and reduced the mortality rate of CLP mice. In addition, peripheral 5-HT deficiency was shown to reduce the accumulation of platelets and NETs in the lung of septic mice. We found that platelets from wild-type (WT), but not Tph1 knockout (Tph1 -/- ), mice promote lipopolysaccharide (LPS)-induced NET formation. Exogenous 5-HT intervention increased LPS-induced NET formation when Tph1 -/- platelets were co-cultured with WT neutrophils. Therefore, our study uncovers a mechanism by which peripheral 5-HT aggravated sepsis-induced ALI by promoting NET formation in the lung of septic mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA