RESUMO
The acidic nuclear phosphoprotein 32 family member A (ANP32A) is a cellular host factor that determines the host tropism of the viral polymerase (vPol) of avian influenza viruses (AIVs). Compared with human ANP32A (hANP32A), chicken ANP32A contains an additional 33 amino acid residues (176-208) duplicated from amino acid residues 149-175 (27 residues), suggesting that these residues could be involved in increasing vPol activity by strengthening interactions between ANP32A and vPol. However, the molecular interactions and functional roles of the 27 residues within hANP32A during AIV vPol activity remain unclear. Here, we examined the functional role of 27 residues of hANP32A based on comparisons with other human (h) ANP32 family members. It was notable that unlike hANP32A and hANP32B, hANP32C could not support vPol activity or replication of AIVs, despite the fact that hANP32C shares a higher sequence identity with hANP32A than hANP32B. Pairwise comparison between hANP32A and hANP32C revealed that Asp149 (D149) and Asp152 (D152) are involved in hydrogen bonding and electrostatic interactions, respectively, which support vPol activity. Mutation of these residues reduced the interaction between hANP32A and vPol. Finally, we demonstrated that precise substitution of the identified residues within chicken ANP32A via homology-directed repair using the CRISPR/Cas9 system resulted in a marked reduction of viral replication in chicken cells. These results increase our understanding of ANP32A function and may facilitate the development of AIV-resistant chickens via precise modification of residues within ANP32A.
Assuntos
Ácido Aspártico/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Vírus da Influenza A/enzimologia , Mutação , Proteínas Nucleares/metabolismo , Infecções por Orthomyxoviridae/virologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico/química , Ácido Aspártico/genética , Galinhas , DNA Polimerase Dirigida por DNA/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Infecções por Orthomyxoviridae/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Homologia de Sequência , Proteínas Virais/genéticaRESUMO
Compared with the well-described XY sex determination system in mammals, the avian ZW sex determination system is poorly understood. Knockdown and overexpression studies identified doublesex and mab-3-related transcription factor 1 (DMRT1) as the testis-determining gene in chicken. However, the detailed effects of DMRT1 gene disruption from embryonic to adult development are not clear. Herein, we have generated DMRT1-disrupted chickens using the clustered regularly interspaced short palindromic repeats-associated protein 9 system, followed by an analysis of physiological, hormonal, and molecular changes in the genome-modified chickens. In the early stages of male chicken development, disruption of DMRT1 induced gonad feminization with extensive physiological and molecular changes; however, functional feminine reproductivity could not be implemented with disturbed hormone synthesis. Subsequent RNA-sequencing analysis of the DMRT1-disrupted chicken gonads revealed gene networks, including several novel genes linearly and non-linearly associated with DMRT1, which are involved in gonad feminization. By comparing the gonads of wild type with the genome-modified chickens, a set of genes were identified that is involved in the ZW sex determination system independent of DMRT1. Our results extend beyond the Z-dosage hypothesis to provide further information about the avian ZW sex determination system and epigenetic effects of gonad feminization.
Assuntos
Galinhas/genética , Feminização/genética , Gônadas/fisiologia , Fatores de Transcrição/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Masculino , Ovário/fisiologia , Cromossomos Sexuais , Testículo/fisiologiaRESUMO
Innate immune system is triggered by pattern recognition receptors (PRRs) recognition. Retinoic acid-inducible gene 1 (RIG-I) is a major sensor that recognizes RNA ligands. However, chickens have no homologue of RIG-I; instead, they rely on melanoma differentiation-associated protein 5 (MDA5) to recognize RNA ligands, which renders chickens susceptible to infection by influenza A viruses (IAVs). Here, we engineered the cMDA5 viral RNA sensing domain (C-terminal domain, CTD) such that it functions similarly to human RIG-I (hRIG-I) by mutating histidine 925 into phenylalanine, a key residue for hRIG-I RNA binding loop function, or by swapping the CTD of cMDA5 with that of hRIG-I or duck RIG-I (dRIG-I). The engineered cMDA5 gene was expressed in cMDA5 knockout DF-1 cells, and interferon-beta (IFN-ß) activity and expression of interferon-related genes were measured after transfection of cells with RNA ligands of hRIG-I or human MDA5 (hMDA5). We found that both mutant cMDA5 and engineered cMDA5 triggered significantly stronger interferon-mediated immune responses than wild-type cMDA5. Moreover, engineered cMDA5 reduced the IAV titer by 100-fold compared with that in control cells. Collectively, engineered cMDA5/RIG-I CTD significantly enhanced interferon-mediated immune responses, making them invaluable strategies for production of IAV-resistant chickens. KEY POINTS: ⢠Mutant chicken MDA5 with critical residue of RIG-I (phenylalanine) enhanced immunity. ⢠Engineered chicken MDA5 with CTD of RIG-I increased IFN-mediated immune responses. ⢠Engineered chicken MDA5 reduced influenza A virus titers by up to 100-fold.
Assuntos
Galinhas , RNA Helicases DEAD-box , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Patos , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Interferon beta/genéticaRESUMO
The development of germ cells and other physiological events in the differentiated ovary of humans are highly conserved with several mammalian species, except for the differences in timing. However, comparative knowledge on this topic is very scarce with respect to humans and lower vertebrates, such as chickens. In chickens, female germ cells enter into meiosis around embryonic day (E) 15.5 and are arrested in meiotic prophase I as primary oocytes. The oocytes arrested in meiosis I are accumulated in germ-cell cysts; shortly after hatching, they are enclosed by flattened granulosa cells in order to form primordial follicles. In humans, the process of meiotic recombination in female germ cells begins in the 10-11th week of gestation, and primordial follicles are formed at around week 20. In this review, we comprehensively elucidate both the conservation and the species-specific differences between chickens and humans with respect to germ cell, oocyte, and follicle development. Importantly, we provide functional insights into a set of chicken oocyte enriched genes (from E16 to 1 week post-hatch) that show convergent and divergent expression patterns with respect to the human oocyte (from week 11 to 26).
Assuntos
Galinhas , Meiose , Animais , Galinhas/genética , Feminino , Células Germinativas , Humanos , Mamíferos , Oócitos/metabolismo , Folículo Ovariano/fisiologiaRESUMO
BACKGROUND: The initial step of influenza infection is binding of the virus to specific sialic acid receptors expressed by host cells. This is followed by cell entry via endocytosis. Cleavage of the influenza virus hemagglutinin (HA) protein is critical for infection; this is performed by host cell proteases during viral replication. In cell culture systems, HA is cleaved by trypsin added to the culture medium. The vast majority of established cell lines are mammalian. RESULTS: In the present study, we generated genetically engineered chicken DF-1 cell lines overexpressing transmembrane protease, serine 2 (TMPRSS2, which cleaves HA), ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3GAL1, which plays a role in synthesis of α-2,3 linked sialic acids to which avian-adapted viruses bind preferentially), or both. We found that overexpression of TMPRSS2 supports the virus life cycle by cleaving HA. Furthermore, we found that overexpression of ST3GAL1 increased the viral titer. Finally, we showed that overexpression of both TMPRSS2 and ST3GAL1 increased the final viral titer due to enhanced support of viral replication and prolonged viability of the cells. In addition, overexpression of these genes of interest had no effect on cell proliferation and viability. CONCLUSIONS: Taken together, the results indicate that these engineered cells could be used as a cell-based system to propagate influenza virus efficiently in the absence of trypsin. Further studies on influenza virus interactions with chicken cell host factors could be studied without the effect of trypsin on cells.
Assuntos
Galinhas/genética , Galinhas/metabolismo , Tripsina/genética , Tripsina/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Influenza Humana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ácido N-Acetilneuramínico , Orthomyxoviridae , Peptídeo Hidrolases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Ácidos Siálicos , Sialiltransferases/genética , Sialiltransferases/metabolismo , Replicação Viral , beta-Galactosídeo alfa-2,3-SialiltransferaseRESUMO
The stability and survival of germ cells are controlled by the germline-specific genes, however, such genes are less known in the avian species. Using a microarray-based the National Center for Biotechnology Information Gene Expression Omnibus dataset, we found an unigene (Gga.9721) that upregulated in the chicken primordial germ cells (PGCs). The unigene showed 97% identities with an uncharacterized chicken cyclin F like gene. The predicted chicken cyclin F like gene was further characterized through expression and regulation in the chicken PGCs. The sequence analysis revealed that the gene shows identities with cyclin F gene and contains an F-box domain. The expression of chicken cyclin F like was detected specifically in the gonads, PGCs, and germline cells. The knockdown of cyclin F like gene resulted in DNA damage and apoptosis in the PGCs. The genes related to stemness and germness were downregulated, whereas, genes related to apoptosis and DNA damage response were increased in the PGCs after the knockdown of chicken cyclin F like. We further observed that the Nanog homeobox controlled the transcriptional activity of chicken cyclin F like gene in PGCs. Collectively, the chicken cyclin F like gene, which is not reported in any other species, is required for maintaining the genome stability of germ cells.
Assuntos
Ciclinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Instabilidade Genômica , Células Germinativas/citologia , Animais , Apoptose , Proliferação de Células , Sobrevivência Celular , Galinhas , Dano ao DNA , Feminino , Masculino , Domínios Proteicos , RNA Interferente Pequeno/metabolismoRESUMO
Maternal RNAs and proteins in the oocyte contribute to early embryonic development. After fertilization, these maternal factors are cleared and embryonic development is determined by an individual's own RNAs and proteins, in a process called the maternal-to-zygotic transition. Zygotic transcription is initially inactive, but is eventually activated by maternal transcription factors. The timing and molecular mechanisms involved in zygotic genome activation (ZGA) have been well-described in many species. Among birds, a transcriptome-based understanding of ZGA has only been explored in chickens by RNA sequencing of intrauterine embryos. RNA sequencing of chicken intrauterine embryos, including oocytes, zygotes, and Eyal-Giladi and Kochav (EGK) stages I-X has enabled the identification of differentially expressed genes between consecutive stages. These studies have revealed that there are two waves of ZGA: a minor wave at the one-cell stage (shortly after fertilization) and a major wave between EGK.III and EGK.VI (during cellularization). In the chicken, the maternal genome is activated during minor ZGA and the paternal genome is quiescent until major ZGA to avoid transcription from supernumerary sperm nuclei. In this review, we provide a detailed overview of events in intrauterine embryonic development in birds (and particularly in chickens), as well as a transcriptome-based analysis of ZGA.
Assuntos
Desenvolvimento Embrionário/genética , RNA Mensageiro Estocado/genética , Transcriptoma/genética , Zigoto/metabolismo , Animais , Embrião de Galinha , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Zigoto/crescimento & desenvolvimentoRESUMO
BACKGROUND: Influenza viruses must utilize host factors to complete their lifecycle. Species-specific differences in host factors between birds and mammals mean that avian influenza viruses (AIVs) replicate well in avian hosts but not in human hosts. Acidic nuclear phosphoprotein 32 family member A (ANP32A) has been identified as the host restriction factor for the viral polymerase (vPol) activity of AIVs. The ANP32A belongs to the conserved ANP32 family, the functional roles of which during viral replication remain unclear. METHODS: In this study, we targeted chicken ANP32A using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing to examine the functional roles of ANP32A and other members of the ANP32 family. RESULTS: We showed that chicken ANP32A only, not ANP32B and ANP32E, plays a pivotal role in supporting vPol activity of AIVs. Furthermore, we found that the human ANP32C, ANP32D, and ANP32E have suppressive effects on vPol activity in contrast to human ANP32A and ANP32B. CONCLUSIONS: Chicken and human ANP32 family members had different effects on vPol activity, suggesting that species-specific vPol activity of AIVs could be caused by the differential functions and overall competency of ANP32 family members.
Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Influenza A/enzimologia , Influenza Aviária/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Replicação Viral/genética , Animais , Galinhas , Cães , Técnicas de Silenciamento de Genes , Influenza Aviária/enzimologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular , Células Madin Darby de Rim Canino , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de DNARESUMO
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) have facilitated the production of genome-edited animals for use as models. Because of their unique developmental system, avian species offer many advantages as model vertebrates. Here, we report the development of novel chicken models using the CRISPR/Cas9-mediated nonhomologous end joining repair pathway in chicken primordial germ cells (PGCs). Through the introduction of a donor plasmid containing short guide RNA recognition sequences and CRISPR/Cas9 plasmids into chicken PGCs, exogenous genes of donor plasmids were precisely inserted into target loci, and production of transgenic chickens was accomplished through subsequent transplantation of the Z chromosome-targeted PGCs. Using this method, we successfully accomplished the targeted gene insertion to the chicken sex Z chromosome without detected off-target effects. The genome-modified chickens robustly expressed green fluorescent protein from the Z chromosome, which could then be used for easy sex identification during embryogenesis. Our results suggest that this powerful genome-editing method could be used to develop many chicken models and should significantly expand the application of genome-modified avians.-Lee, H. J., Yoon, J. W., Jung, K. M., Kim, Y. M., Park, J. S., Lee, K. Y., Park, K. J., Hwang, Y. S., Park, Y. H., Rengaraj, D., Han, J. Y. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development.
Assuntos
Galinhas/genética , Células Germinativas/fisiologia , Cromossomos Sexuais/genética , Animais , Animais Geneticamente Modificados/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Genoma/genética , Proteínas de Fluorescência Verde/genética , Mutagênese Insercional/métodos , RNA Guia de Cinetoplastídeos/genéticaRESUMO
The zebra finch has been used as a valuable vocal learning animal model for human spoken language. It is representative of vocal learning songbirds specifically, which comprise half of all bird species, and of Neoaves broadly, which comprise 95% of all bird species. Although transgenesis in the zebra finch has been accomplished, it is with a very low efficiency of germ-line transmission and far from the efficiency with a more genetically tractable but vocal nonlearning species, the chicken (a Galloanseriformes). To improve germ-line transmission in the zebra finch, we identified and characterized its primordial germ cells (PGCs) and compared them with chicken. We found striking differences between the 2 species, including that zebra finch PGCs were more numerous, more widely distributed in early embryos before colonization into the gonads, had slower timing of colonization, and had a different developmental gene-expression program. We improved conditions for isolating and culturing zebra finch PGCs in vitro and were able to transfect them with gene-expression vectors and incorporate them into the gonads of host embryos. Our findings demonstrate important differences in the PGCs of the zebra finch and advance the first stage of creating PGC-mediated germ-line transgenics of a vocal learning species.-Jung, K. M., Kim, Y. M., Keyte, A. L., Biegler, M. T., Rengaraj, D., Lee, H. J., Mello, C. V., Velho, T. A. F., Fedrigo, O., Haase, B., Jarvis, E. D., Han, J. Y. Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch.
Assuntos
Tentilhões/fisiologia , Células Germinativas/fisiologia , Aprendizagem/fisiologia , Animais , Modelos Animais de Doenças , Embrião não Mamífero/fisiologia , Feminino , Expressão Gênica/fisiologia , MasculinoRESUMO
The deleted in azoospermia like (DAZL) is required for germ cells development and maintenance. In chickens, the mRNA and protein of DAZL, a representative maternally inherited germ plasm factor, are detected in the germ plasm of oocyte, zygote, and all stages of the intrauterine embryos. However, it is still insufficient to explain the origin and specification process of chicken germ cells, because the stage at which the zygotic transcription of DAZL occurs and the stage at which the maternal DAZL RNA/protein clears have not yet been fully identified. Moreover, a comprehensive understanding of the expression of DAZL interacting genes during the germ cells specification and development and zygotic genome activation (ZGA) is lacking in chickens. In this study, we identified a set of DAZL interacting genes in chickens using in silico prediction method. Then, we analyzed the whole-transcriptome sequencing (WTS)-based expression of DAZL and its interacting genes in the chicken oocyte, zygote, and Eyal-Giladi and Kochav (EGK) stage embryos (EGK.I to EGK.X). In the results, DAZL transcripts are increased in the zygote (onset of transcription), maintained the increased level until EGK.VI, and decreased from EGK.VIII (possible clearance of maternal RNAs). Among the DAZL interacting genes, most of them are increased either at 1st ZGA or 2nd ZGA, indicating their involvement in germ cells specification and development.
Assuntos
Galinhas/genética , Proteínas de Ligação a RNA/genética , Animais , Diferenciação Celular/fisiologia , Embrião de Galinha , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Epistasia Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/veterinária , ZigotoRESUMO
The activating leukocyte immunoglobulin-like receptors (LILRAs) play an important role in innate immunity. However, most of the LILRA members have not been characterized in avian species including chickens. The present study is the first attempt at cloning, structural analysis and functional characterization of two LILRAs (LILRA2 and LILRA6) in chickens. Multiple sequence alignments and construction of a phylogenetic tree of chicken LILRA2 and LILRA6 with mammalian proteins revealed high conservation between chicken LILRA2 and LILRA6 and a close relationship between the chicken and mammalian proteins. The mRNA expression of LILRA2 and LILRA6 was high in chicken HD11 macrophages and the small intestine compared to that in several other tissues and cells tested. To examine the function of LILRA2 and LILRA6 in chicken immunity, LILRA2 and LILRA6 were transfected into HD11 cells. Our findings indicated that LILRA2 and LILRA6 are associated with the phosphorylation of Src kinases and SHP2, which play a regulatory role in immune functions. Moreover, LILRA6 associated with and activated MHC class I, ß2-microglobulin and induced the expression of transporters associated with antigen processing but LILRA2 did not. Furthermore, both LILRA2 and LILRA6 activated JAK-STAT, NF-κB, PI3K/AKT and ERK1/2 MAPK signaling pathways and induced Th1-, Th2- and Th17-type cytokines and Toll-like receptors. Collectively, this study indicates that LILRA2 and LILRA6 are essential for macrophage-mediated immune responses and they have the potential to complement the innate and adaptive immune system against pathogens.
Assuntos
Galinhas/imunologia , Citocinas/imunologia , Imunidade Inata , Macrófagos/imunologia , Receptores Imunológicos/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Galinhas/genética , Clonagem Molecular , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Macrófagos/metabolismo , Filogenia , Receptores Imunológicos/química , Receptores Imunológicos/genética , Alinhamento de Sequência , Transdução de SinaisRESUMO
OBJECTIVE: Defensins are a large family of antimicrobial peptides and components of the innate immune system that invoke an immediate immune response against harmful pathogens. Defensins are classified into alpha-, beta-, and theta-defensins. Avian species only possess beta-defensins (AvBDs), and approximately 14 AvBDs (AvBD1-AvBD14) have been identified in chickens to date. Although substantial information is available on the conservation and phylogenetics, limited information is available on the expression and regulation of AvBD8 in chicken immune tissues and cells. METHODS: We examined AvBD8 protein expression in immune tissues of White Leghorn chickens (WL) by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In addition, we examined AvBD8 expression in chicken T-, B-, macrophage-, and fibroblast-cell lines and its regulation in these cells after lipopolysaccharide (LPS) treatment by immunocytochemistry and RT-qPCR. RESULTS: Our results showed that chicken AvBD8 protein was strongly expressed in the WL intestine and in macrophages. AvBD8 gene expression was highly upregulated in macrophages treated with different LPS concentrations compared with that in T- and B-cell lines in a time-independent manner. Moreover, chicken AvBD8 strongly interacted with other AvBDs and with other antimicrobial peptides as determined by bioinformatics. CONCLUSION: Our study provides the expression and regulation of chicken AvBD8 protein in immune tissues and cells, which play crucial role in the innate immunity.
RESUMO
OBJECTIVE: Despite an increasing number of investigations into the pathophysiology of necrotic enteritis (NE) disease, etiology of NE-associated diseases, and gene expression profiling of NE-affected tissues, the microRNA (miRNA) profiles of NE-affected poultry have been poorly studied. The aim of this study was to induce NE disease in the genetically disparate Fayoumi chicken lines, and to perform non-coding RNA sequencing in the intestinal mucosal layer. METHODS: NE disease was induced in the Fayoumi chicken lines (M5.1 and M15.2), and non-coding RNA sequencing was performed in the intestinal mucosal layer of both NE-affected and uninfected chickens to examine the differential expression of miRNAs. Next, quantitative real-time polymerase chain reaction (real-time qPCR) was performed to further examine four miRNAs that showed the highest fold differences. Finally, bioinformatics analyses were performed to examine the four miRNAs target genes involvement in the signaling pathways, and to examine their interaction. RESULTS: According to non-coding RNA sequencing, total 50 upregulated miRNAs and 26 downregulated miRNAs were detected in the NE-induced M5.1 chickens. While 32 upregulated miRNAs and 11 downregulated miRNAs were detected in the NE-induced M15.2 chickens. Results of real-time qPCR analysis on the four miRNAs (gga-miR-9-5p, gga-miR-20b-5p, gga-miR-196-5p, and gga-let-7d) were mostly correlated with the results of RNAseq. Overall, gga-miR-20b-5p was significantly downregulated in the NE-induced M5.1 chickens and this was associated with the upregulation of its top-ranking target gene, mitogen-activated protein kinase, kinase 2. Further bioinformatics analyses revealed that 45 of the gene targets of gga-miR-20b-5p were involved in signal transduction and immune system-related pathways, and 35 of these targets were predicted to interact with each other. CONCLUSION: Our study is a novel report of miRNA expression in Fayoumi chickens, and could be very useful in understanding the role of differentially expressed miRNAs in a NE disease model.
RESUMO
BACKGROUND: Host defence peptides are a diverse group of small, cationic peptides and are important elements of the first line of defense against pathogens in animals. Expression and functional analysis of host defense peptides has been evaluated in chicken but there are no direct, comprehensive comparisons with all gene family and individual genes. RESULTS: We examined the expression patterns of all known cathelicidins, ß-defensins and NK-lysin in multiple selected tissues from chickens. CATH1 through 3 were predominantly expressed in the bone marrow, whereas CATHB1 was predominant in bursa of Fabricius. The tissue specific pattern of ß-defensins generally fell into two groups. ß-defensin1-7 expression was predominantly in bone marrow, whereas ß-defensin8-10 and ß-defensin13 were highly expressed in liver. NK-lysin expression was highest in spleen. We synthesized peptide products of these gene families and analysed their antibacterial efficacy. Most of the host defense peptides showed antibacterial activity against E.coli with dose-dependent efficacy. ß-defensin4 and CATH3 displayed the strongest antibacterial activity among all tested chicken HDPs. Microscopic analyses revealed the killing of bacterium by disrupting membranes with peptide treatment. CONCLUSIONS: These results demonstrate dose-dependent antimicrobial effects of chicken HDPs mediated by membrane damage and demonstrate the differential tissue expression pattern of bioactive HDPs in chicken and the relative antimicrobial potency of the peptides they encode.
Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Regulação da Expressão Gênica , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Catelicidinas/genética , Catelicidinas/metabolismo , Membrana Celular/efeitos dos fármacos , Galinhas , Perfilação da Expressão Gênica , Proteolipídeos/genética , Proteolipídeos/metabolismo , Distribuição Tecidual , beta-Defensinas/genética , beta-Defensinas/metabolismoRESUMO
Intracytoplasmic sperm injection (ICSI) is an important technique in animal biotechnology for animal cloning and conservation of genetic resources, but has been a challenge for avian species. In the present study, we investigated the ability of cryopreserved quail spermatozoa to achieve fertilisation and embryo development. Female quail were killed 70-120min after previous oviposition to collect unfertilised oocytes from the oviduct. Fresh or cryopreserved-thawed spermatozoa were injected into the cytoplasm of unfertilised oocytes, and the manipulated oocytes were incubated in quail surrogate eggshells. Injection of fresh spermatozoa supplemented with inositol 1,4,5-trisphosphate (IP3) resulted in a significantly increased rate of embryo development compared with injection of fresh spermatozoa alone (90% vs 13%, respectively). Although >80% of embryos stopped cell division and development before Hamburger and Hamilton (HH) Stage 3, approximately 15% of embryos from the fresh sperm injection developed to past HH Stage 4, and one embryo survived up to HH Stage 39 (11 days of incubation). In the case of cryopreserved spermatozoa, the embryo development rate was 30% after ICSI, and this increased significantly to 74% with IP3 supplementation. In conclusion, cryopreserved spermatozoa combined with ICSI followed by surrogate eggshell culture can develop quail embryos.
Assuntos
Criopreservação , Fertilização , Injeções de Esperma Intracitoplásmicas , Espermatozoides/citologia , Animais , Feminino , Masculino , Oócitos , CodornizRESUMO
Air pollution is consistently associated with various diseases and subsequent death among children, adult, and elderly people worldwide. Motor vehicle exhaust contributes to a large proportion of the air pollution present. The motor vehicle exhaust systems emit a variety of toxic components, including carbon monoxide, nitrogen oxides, volatile organic compounds, ozone, particulate matter, and polycyclic aromatic hydrocarbons. Several epidemiological studies and laboratory studies have demonstrated that these components are potentially mutagenic, carcinogenic, and endocrine disrupting agents. However, their impact on male reproductive function and associated proteins is not very clear. Therefore, a comprehensive review on the effects of motor vehicle exhaust on male reproductive function and associated proteins is needed to better understand the risks of exhaust exposure for men. We found that motor vehicle exhaust can cause harmful effects on male reproductive functions by altering organ weights, reducing the spermatozoa qualities, and inducing oxidative stress. Remarkably, motor vehicle exhaust exposure causes significant changes in the expression patterns of proteins that are key components involved in spermatogenesis and testosterone synthesis. In conclusion, this review helps to describe the risks of vehicle exhaust exposure and its relationship to potential adverse effects on the male reproduction system.
Assuntos
Poluentes Atmosféricos/toxicidade , Infertilidade Masculina/induzido quimicamente , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Animais , Exposição Ambiental , Feminino , Regulação da Expressão Gênica , Humanos , Infertilidade Masculina/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteoma/genética , Proteoma/metabolismoRESUMO
We performed a comprehensive analysis of human Y chromosome-encoded proteins, their pathways, and their interactions using bioinformatics tools. From the NCBI annotation release 107 of human genome, we retrieved a total of 66 proteins encoded on Y chromosome. Most of the retrieved proteins were also matched with the proteins listed in the core databases of the Human Proteome Project including neXtProt, PeptideAtlas, and the Human Protein Atlas. When we examined the pathways of human Y-encoded proteins through KEGG database and Pathway Studio software, many of proteins fall into the categories related to cell signaling pathways. Using the STRING program, we found a total of 49 human Y-encoded proteins showing strong/medium interaction with each other. While using the Pathway studio software, we found that a total of 16 proteins interact with other chromosome-encoded proteins. In particular, the SRY protein interacted with 17 proteins encoded on other chromosomes. Additionally, we aligned the sequences of human Y-encoded proteins with the sequences of chimpanzee and mouse Y-encoded proteins using the NCBI BLAST program. This analysis resulted in a significant number of orthologous proteins between human, chimpanzee, and mouse. Collectively, our findings provide the scientific community with additional information on the human Y chromosome-encoded proteins.
Assuntos
Cromossomos Humanos Y , Biologia Computacional , Proteínas/genética , Animais , Humanos , Camundongos , Pan troglodytesRESUMO
In most animals, primordial germ cells (PGCs) originate from an extragonadal region and migrate across the embryo to the gonads, where they differentiate and function. During their migration, PGCs move passively by morphogenetic movement of the embryo or move actively through signaling molecules. To uncover the underlying mechanism of first-phase PGC migration toward the germinal crescent in chickens, we investigated the spatial and temporal action of PGCs during primitive streak formation. Exogenously transplanted PGCs migrated toward the anterior region of the embryo and the embryonic gonads when they were transplanted into the subgerminal cavity, but not into the posterior marginal zone, in Eyal-Giladi and Kochav stage X embryos. These results indicate that for passive migration toward the anterior region the initial location of PGCs should be the central region. Notably, although PGCs and DF-1 cells migrated passively toward the anterior region, only PGCs migrated to the germinal crescent, where endogenous PGCs mainly reside, by active movement. In a live-imaging experiment with green fluorescence protein-expressing transgenic embryos, exogenous PGCs demonstrated markedly faster migration when they reached the anterior one-third of the embryo, while somatic cells showed epiblast movement with constant speed. Also, migrating PGCs exhibited successive contraction and expansion indicating their active migration. Our results suggest that chicken PGCs use sequential passive and active forces to migrate toward the germinal crescent.
Assuntos
Movimento Celular , Embrião de Galinha/citologia , Células Germinativas/fisiologia , Animais , Embrião de Galinha/crescimento & desenvolvimento , Células Germinativas/transplante , Gônadas/citologia , Gônadas/embriologiaRESUMO
Vitamin E is found in high quantities in vegetable oils. Although vitamin E has multiple functions in humans and animals, its key function is protecting cells from oxidative damage. Since its discovery, several studies have demonstrated that vitamin E deficiency causes impaired fertility in humans and lab animals. However, the effects of vitamin E deficiency or of its supplementation on the fertility of farm animals, particularly on poultry, are less well studied. Therefore, a comprehensive review of the effects of dietary vitamin E on the fertility of poultry species is needed in order to understand the beneficial role of vitamin E in the maintenance of sperm and egg qualities. Based on the observations reviewed here, we found that a moderate amount of vitamin E in poultry diet significantly protects semen/sperm qualities in male birds and egg qualities in female birds via decreasing the lipid peroxidation in semen/sperms and eggs. This review provides an overall understanding of the effects of dietary vitamin E on fertility functions in poultry species.