Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Res ; 1844: 149165, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39155034

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by abnormal accumulation of tau proteins and amyloid-ß, leading to neuronal death and cognitive impairment. Recent studies have implicated aging pathways, including dysregulation of tau and cellular senescence in AD pathogenesis. In AD brains, tau protein, which normally stabilizes microtubules, becomes hyperphosphorylated and forms insoluble neurofibrillary tangles. These tau aggregates impair neuronal function and are propagated across the brain's neurocircuitry. Meanwhile, the number of senescent cells accumulating in the aging brain is rising, releasing a pro-inflammatory SASP responsible for neuroinflammation and neurodegeneration. This review explores potential therapeutic interventions for AD targeting tau protein and senescent cells, and tau -directed compounds, senolytics, eliminating senescent cells, and agents that modulate the SASP-senomodulators. Ultimately, a combined approach that incorporates tau-directed medications and targeted senescent cell-based therapies holds promise for reducing the harmful impact of AD's shared aging pathways.

2.
Cell Biochem Biophys ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822204

RESUMO

The most prevalent inflammatory arthritis and a leading contributor to disability is rheumatoid arthritis (RA). Although it may not have arrived in Europe until the 17th century, it was present in early Native American communities several thousand years ago. Exosomes released by mesenchymal stem cells (MSCs) are highly immunomodulatory due to the origin of the cell. As a cell-free therapy, MSCs-exosomes are less toxic and elicit a weakened immune response than cell-based therapies. Exosomal noncoding RNAs (ncRNAs) are closely associated with a number of biological and functional facets of human health, especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Various exo-miRNAs and lncRNAs such as HAND2-AS1, miR-150-5p, miRNA-124a, and miR-320a lodged with MSC could be appropriate therapeutic ways for RA treatment. These MSC-derived exosomes affect RA disorders via different molecular pathways such as NFK-ß, MAPK, and Wnt. The purpose of this review is to review the research that has been conducted since 2020 so far in the field of RA disease treatment with MSC-loaded exo-miRNAs and exo-lncRNAs.

3.
Int Immunopharmacol ; 140: 112730, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39083927

RESUMO

Colorectal cancer (CRC) involves various genetic alterations, with liver metastasis posing a significant clinical challenge. Furthermore, CRC cells mostly show an increase in resistance to traditional treatments like chemotherapy. It is essential to investigate more advanced and effective therapies to prevent medication resistance and metastases and extend patient life. As a result, it is anticipated that small interfering RNAs (siRNAs) would be exceptional instruments that can control gene expression by RNA interference (RNAi). In eukaryotes, RNAi is a biological mechanism that destroys specific messenger RNA (mRNA) molecules, thereby inhibiting gene expression. In the management of CRC, this method of treatment represents a potential therapeutic agent. However, it is important to acknowledge that siRNA therapies have significant issues, such as low serum stability and nonspecific absorption into biological systems. Delivery mechanisms are thus being created to address these issues. In the current work, we address the potential benefits of siRNA therapy and outline the difficulties in treating CRCby focusing on the primary signaling pathways linked to metastasis as well as genes implicated in the multi-drug resistance (MDR) process.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , RNA Interferente Pequeno , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Metástase Neoplásica , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA