Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(52): 13353-13358, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530654

RESUMO

Streptococcus pneumoniae remains a deadly disease in small children and the elderly even though conjugate and polysaccharide vaccines based on isolated capsular polysaccharides (CPS) are successful. The most common serotypes that cause infection are used in vaccines around the world, but differences in geographic and demographic serotype distribution compromises protection by leading vaccines. The medicinal chemistry approach to glycoconjugate vaccine development has helped to improve the stability and immunogenicity of synthetic vaccine candidates for several serotypes leading to the induction of higher levels of specific protective antibodies. Here, we show that marketed CPS-based glycoconjugate vaccines can be improved by adding synthetic glycoconjugates representing serotypes that are not covered by existing vaccines. Combination (coformulation) of synthetic glycoconjugates with the licensed vaccines Prevnar13 (13-valent) and Synflorix (10-valent) yields improved 15- and 13-valent conjugate vaccines, respectively, in rabbits. A pentavalent semisynthetic glycoconjugate vaccine containing five serotype antigens (sPCV5) elicits antibodies with strong in vitro opsonophagocytic activity. This study illustrates that synthetic oligosaccharides can be used in coformulation with both isolated polysaccharide glycoconjugates to expand protection from existing vaccines and each other to produce precisely defined multivalent conjugated vaccines.


Assuntos
Vacinas Bacterianas/imunologia , Polissacarídeos/imunologia , Streptococcus pneumoniae/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Glicoconjugados/imunologia , Infecções Pneumocócicas/imunologia , Polissacarídeos/síntese química , Coelhos , Sorogrupo , Vacinas Conjugadas/imunologia , Vacinas Sintéticas/imunologia
2.
Anesthesiology ; 132(4): 795-807, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101978

RESUMO

BACKGROUND: Community-acquired pneumonia and associated sepsis cause high mortality despite antibiotic treatment. Uncontrolled inflammatory host responses contribute to the unfavorable outcome by driving lung and extrapulmonary organ failure. The complement fragment C5a holds significant proinflammatory functions and is associated with tissue damage in various inflammatory conditions. The authors hypothesized that C5a concentrations are increased in pneumonia and C5a neutralization promotes barrier stabilization in the lung and is protective in pneumococcal pulmonary sepsis. METHODS: The authors investigated regulation of C5a in pneumonia in a prospective patient cohort and in experimental pneumonia. Two complementary models of murine pneumococcal pneumonia were applied. Female mice were treated with NOX-D19, a C5a-neutralizing L-RNA-aptamer. Lung, liver, and kidney injury and the inflammatory response were assessed by measuring pulmonary permeability (primary outcome), pulmonary and blood leukocytes, cytokine concentrations in lung and blood, and bacterial load in lung, spleen, and blood, and performing histologic analyses of tissue damage, apoptosis, and fibrin deposition (n = 5 to 13). RESULTS: In hospitalized patients with pneumonia (n = 395), higher serum C5a concentrations were observed compared to healthy subjects (n = 24; 6.3 nmol/l [3.9 to 10.0] vs. 4.5 nmol/l [3.8 to 6.6], median [25 to 75% interquartile range]; difference: 1.4 [95% CI, 0.1 to 2.9]; P = 0.029). Neutralization of C5a in mice resulted in lower pulmonary permeability in pneumococcal pneumonia (1.38 ± 0.89 vs. 3.29 ± 2.34, mean ± SD; difference: 1.90 [95% CI, 0.15 to 3.66]; P = 0.035; n = 10 or 11) or combined severe pneumonia and mechanical ventilation (2.56 ± 1.17 vs. 7.31 ± 5.22; difference: 4.76 [95% CI, 1.22 to 8.30]; P = 0.011; n = 9 or 10). Further, C5a neutralization led to lower blood granulocyte colony-stimulating factor concentrations and protected against sepsis-associated liver injury. CONCLUSIONS: Systemic C5a is elevated in pneumonia patients. Neutralizing C5a protected against lung and liver injury in pneumococcal pneumonia in mice. Early neutralization of C5a might be a promising adjunctive treatment strategy to improve outcome in community-acquired pneumonia.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Complemento C5a/antagonistas & inibidores , Pneumonia Pneumocócica/sangue , Pneumonia Pneumocócica/prevenção & controle , Sepse/sangue , Sepse/prevenção & controle , Animais , Anticorpos Neutralizantes/administração & dosagem , Biomarcadores/sangue , Estudos de Coortes , Complemento C5a/metabolismo , Feminino , Fatores Imunológicos/antagonistas & inibidores , Fatores Imunológicos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos
3.
Proc Natl Acad Sci U S A ; 114(42): 11063-11068, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973947

RESUMO

Glycoconjugate vaccines based on isolated capsular polysaccharide (CPS) save millions of lives annually by preventing invasive pneumococcal disease caused by Streptococcus pneumoniae Some components of the S. pneumoniae glycoconjugate vaccine Prevnar13 that contains CPS antigens from 13 serotypes undergo modifications or degradation during isolation and conjugation, resulting in production problems and lower efficacy. We illustrate how stable, synthetic oligosaccharide analogs of labile CPS induce a specific protective immune response against native CPS using S. pneumoniae serotype 5 (ST-5), a problematic CPS component of Prevnar13. The rare aminosugar l-PneuNAc and a branched l-FucNAc present in the natural repeating unit (RU) are essential for antibody recognition and avidity. The epitope responsible for specificity differs from the part of the antigen that is stabilized by chemical modification. Glycoconjugates containing stable, monovalent synthetic oligosaccharide analogs of ST-5 CPS RU induced long-term memory and protective immune responses in rabbits superior to those elicited by the ST-5 CPS component in multivalent Prevnar13.


Assuntos
Vacinas Pneumocócicas , Streptococcus pneumoniae/imunologia , Animais , Glicoconjugados , Coelhos , Sorogrupo , Vacinas Sintéticas
4.
Am J Respir Crit Care Med ; 198(2): 220-231, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29447449

RESUMO

RATIONALE: During pneumonia, pathogen-host interaction evokes inflammation and lung barrier dysfunction. Tie2 activation by angiopoietin-1 reduces, whereas Tie2 blockade by angiopoietin-2 increases, inflammation and permeability during sepsis. The role of angiopoietin-1/-2 in pneumonia remains unidentified. OBJECTIVES: To investigate the prognostic and pathogenic impact of angiopoietins in regulating pulmonary vascular barrier function and inflammation in bacterial pneumonia. METHODS: Serum angiopoietin levels were quantified in pneumonia patients of two independent cohorts (n = 148, n = 395). Human postmortem lung tissue, pneumolysin- or angiopoietin-2-stimulated endothelial cells, isolated perfused and ventilated mouse lungs, and mice with pneumococcal pneumonia were investigated. MEASUREMENTS AND MAIN RESULTS: In patients with pneumonia, decreased serum angiopoietin-1 and increased angiopoietin-2 levels were observed as compared with healthy subjects. Higher angiopoietin-2 serum levels were found in patients with community-acquired pneumonia who died within 28 days of diagnosis compared with survivors. Receiver operating characteristic analysis revealed improved prognostic accuracy of CURB-65 for 28-day survival, intensive care treatment, and length of hospital stay if combined with angiopoietin-2 serum levels. In vitro, pneumolysin enhanced endothelial angiopoietin-2 release, angiopoietin-2 increased endothelial permeability, and angiopoietin-1 reduced pneumolysin-evoked endothelial permeability. Ventilated and perfused lungs of mice with angiopoietin-2 knockdown showed reduced permeability on pneumolysin stimulation. Increased pulmonary angiopoietin-2 and reduced angiopoietin-1 mRNA expression were observed in Streptococcus pneumoniae-infected mice. Finally, angiopoietin-1 therapy reduced inflammation and permeability in murine pneumonia. CONCLUSIONS: These data suggest a central role of angiopoietin-1/-2 in pneumonia-evoked inflammation and permeability. Increased angiopoietin-2 serum levels predicted mortality and length of hospital stay, and angiopoietin-1 may provide a therapeutic target for severe pneumonia.


Assuntos
Angiopoietina-1/uso terapêutico , Angiopoietina-2/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Inflamação/fisiopatologia , Pulmão/efeitos dos fármacos , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/fisiopatologia , Angiopoietina-1/sangue , Angiopoietina-2/sangue , Humanos , Prognóstico
5.
Am J Respir Cell Mol Biol ; 58(4): 440-448, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29361238

RESUMO

Descriptive histopathology of mouse models of pneumonia is essential in assessing the outcome of infections, molecular manipulations, or therapies in the context of whole lungs. Quantitative comparisons between experimental groups, however, have been limited to laborious stereology or ill-defined scoring systems that depend on the subjectivity of a more or less experienced observer. Here, we introduce self-learning digital image analyses that allow us to transform optical information from whole mouse lung sections into statistically testable data. A pattern-recognition-based software and a nuclear count algorithm were adopted to quantify user-defined pathologies from whole slide scans of lungs infected with Streptococcus pneumoniae or influenza A virus compared with PBS-challenged lungs. The readout parameters "relative area affected" and "nuclear counts per area" are proposed as relevant criteria for the quantification of lesions from hematoxylin and eosin-stained sections, also allowing for the generation of a heat map of, for example, immune cell infiltrates with anatomical assignments across entire lung sections. Moreover, when combined with immunohistochemical labeling of marker proteins, both approaches are useful for the identification and counting of, for example, immune cell populations, as validated here by direct comparisons with flow cytometry data. The solutions can easily and flexibly be adjusted to specificities of different models or pathogens. Automated digital analyses of whole mouse lung sections may set a new standard for the user-defined, high-throughput comparative quantification of histological and immunohistochemical images. Still, our algorithms established here are only a start, and need to be tested in additional studies and other applications in the future.


Assuntos
Algoritmos , Técnicas Citológicas , Interpretação de Imagem Assistida por Computador/métodos , Pulmão/patologia , Infecções por Orthomyxoviridae/patologia , Pneumonia Pneumocócica/patologia , Pneumonia Viral/patologia , Doença Aguda , Animais , Automação Laboratorial , Modelos Animais de Doenças , Vírus da Influenza A/patogenicidade , Pulmão/microbiologia , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/virologia , Reconhecimento Automatizado de Padrão , Pneumonia Pneumocócica/microbiologia , Pneumonia Viral/virologia , Valor Preditivo dos Testes , Software , Streptococcus pneumoniae/patogenicidade
6.
Am J Respir Crit Care Med ; 196(2): 186-199, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005404

RESUMO

RATIONALE: Acute respiratory distress syndrome is characterized by alveolar epithelial cell injury, edema formation, and intraalveolar contact phase activation. OBJECTIVES: To explore whether C1 esterase inhibitor (C1INH), an endogenous inhibitor of the contact phase, may protect from lung injury in vivo and to decipher the possible underlying mechanisms mediating protection. METHODS: The ability of C1INH to control the inflammatory processes was studied in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: Here, we demonstrate that application of C1INH alleviates bleomycin-induced lung injury via direct interaction with extracellular histones. In vitro, C1INH was found to bind all histone types. Interaction with histones was independent of its protease inhibitory activity, as demonstrated by the use of reactive-center-cleaved C1INH, but dependent on its glycosylation status. C1INH sialylated-N- and -O-glycans were not only essential for its interaction with histones but also to protect against histone-induced cell death. In vivo, histone-C1INH complexes were detected in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome and multiple models of lung injury. Furthermore, reactive-center-cleaved C1INH attenuated pulmonary damage evoked by intravenous histone instillation. CONCLUSIONS: Collectively, C1INH administration provides a new therapeutic option for disorders associated with histone release.


Assuntos
Proteína Inibidora do Complemento C1/farmacologia , Histonas/metabolismo , Lesão Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar , Proteína Inibidora do Complemento C1/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
7.
J Am Chem Soc ; 139(41): 14783-14791, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28945368

RESUMO

Invasive pneumococcal diseases (IPDs) remain the leading cause of vaccine-preventable childhood death, even though highly effective pneumococcal conjugate vaccines (PCVs) are used in national immunization programs in many developing countries. Licensed PCVs currently cover only 13 of the over 90 serotypes of Streptococcus pneumoniae (Sp), so nonvaccine serotypes are a major obstacle to the effective control of IPD. Sp serotype 2 (ST2) is such a nonvaccine serotype that is the main cause of IPD in many countries, including Nepal, Bangladesh, and Guatemala. Glycoconjugate vaccines based on synthetic oligosaccharides instead of isolated polysaccharides offer an attractive alternative to the traditional process for PCV development. To prevent the IPDs caused by ST2, we identified an effective ST2 neoglycoconjugate vaccine candidate that was identified using a medicinal chemistry approach. Glycan microarrays containing a series of synthetic glycans resembling portions of the ST2 capsular polysaccharide (CPS) repeating unit were used to screen human and rabbit sera and identify epitope hits. Synthetic hexasaccharide 2, resembling one repeating unit (RU) of ST2 CPS, emerged as a hit from the glycan array screens. Vaccination with neoglycoconjugates consisting of hexasaccharide 2 coupled to carrier protein CRM197 stimulates a T-cell-dependent B-cell response that induced CPS-specific opsonic antibodies in mice, resulting in killing of encapsulated bacteria by phagocytic activity. Subcutaneous immunization with neoglycoconjugate protected mice from transnasal challenge with the highly virulent ST2 strain NCTC 7466 by reducing the bacterial load in lung tissue and blood.


Assuntos
Anticorpos Antibacterianos/imunologia , Glicoconjugados/imunologia , Oligossacarídeos/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/química , Streptococcus pneumoniae/imunologia , Administração Intranasal , Animais , Linfócitos B/imunologia , Carga Bacteriana , Sangue/microbiologia , Modelos Animais de Doenças , Feminino , Glicoconjugados/síntese química , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Oligossacarídeos/síntese química , Fagocitose , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/química , Vacinas Pneumocócicas/imunologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Coelhos , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/patogenicidade , Linfócitos T/imunologia , Vacinação , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia
8.
Angew Chem Int Ed Engl ; 56(45): 13973-13978, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28815890

RESUMO

Hospital-acquired infections are an increasingly serious health concern. Infections caused by carpabenem-resistant Klebsiella pneumoniae (CR-Kp) are especially problematic, with a 50 % average survival rate. CR-Kp are isolated from patients with ever greater frequency, 7 % within the EU but 62 % in Greece. At a time when antibiotics are becoming less effective, no vaccines to protect from this severe bacterial infection exist. Herein, we describe the convergent [3+3] synthesis of the hexasaccharide repeating unit from its capsular polysaccharide and related sequences. Immunization with the synthetic hexasaccharide 1 glycoconjugate resulted in high titers of cross-reactive antibodies against CR-Kp CPS in mice and rabbits. Whole-cell ELISA was used to establish the surface staining of CR-Kp strains. The antibodies raised were found to promote phagocytosis. Thus, this semi-synthetic glycoconjugate is a lead for the development of a vaccine against a rapidly progressing, deadly bacterium.


Assuntos
Antibacterianos/farmacologia , Vacinas Bacterianas/imunologia , Carbapenêmicos/farmacologia , Glicoconjugados/síntese química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/imunologia , Farmacorresistência Bacteriana , Ensaio de Imunoadsorção Enzimática , Glicoconjugados/química , Glicoconjugados/imunologia , Infecções por Klebsiella/prevenção & controle , Camundongos , Oligossacarídeos/química , Fagocitose/imunologia , Coelhos
9.
Infect Immun ; 83(12): 4617-29, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26371127

RESUMO

Pulmonary infection with influenza virus is frequently complicated by bacterial superinfection, with Streptococcus pneumoniae being the most prevalent causal pathogen and hence often associated with high morbidity and mortality rates. Local immunosuppression due to pulmonary influenza virus infection has been identified as a major cause of the pathogenesis of secondary bacterial lung infection. Thus, specific local stimulation of the pulmonary innate immune system in subjects with influenza virus infection might improve the host defense against secondary bacterial pathogens. In the present study, we examined the effect of pulmonary immunostimulation with Toll-like receptor 2 (TLR-2)-stimulating macrophage-activating lipopeptide 2 (MALP-2) in influenza A virus (IAV)-infected mice on the course of subsequent pneumococcal superinfection. Female C57BL/6N mice infected with IAV were treated with MALP-2 on day 5 and challenged with S. pneumoniae on day 6. Intratracheal MALP-2 application increased proinflammatory cytokine and chemokine release and enhanced the recruitment of leukocytes, mainly neutrophils, into the alveolar space of IAV-infected mice, without detectable systemic side effects. Local pulmonary instillation of MALP-2 in IAV-infected mice 24 h before transnasal pneumococcal infection considerably reduced the bacterial number in the lung tissue without inducing exaggerated inflammation. The pulmonary viral load was not altered by MALP-2. Clinically, MALP-2 treatment of IAV-infected mice increased survival rates and reduced hypothermia and body weight loss after pneumococcal superinfection compared to those of untreated coinfected mice. In conclusion, local immunostimulation with MALP-2 in influenza virus-infected mice improved pulmonary bacterial elimination and increased survival after subsequent pneumococcal superinfection.


Assuntos
Fatores Imunológicos/farmacologia , Lipopeptídeos/farmacologia , Pulmão/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Pneumonia Pneumocócica/tratamento farmacológico , Animais , Coinfecção , Feminino , Hipotermia/prevenção & controle , Imunidade Inata , Imunização , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Neutrófilos/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/mortalidade , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/patogenicidade , Análise de Sobrevida , Redução de Peso/efeitos dos fármacos
10.
Eur J Immunol ; 44(3): 662-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24242887

RESUMO

Formation of the splenic marginal zone (MZ) depends on the alternative NF-κB signaling pathway. Recently, we reported that unrestricted activation of this pathway in NF-κB2/p100-deficient (p100(-/-) ) knock-in mice alters the phenotype of MZ stroma and B cells. Here, we show that lack of the p100 inhibitor resulted in an expansion of both MZ B and peritoneal B-1 cells. However, these cells failed to generate proliferating blasts in response to T-cell-independent type 2 (TI-2) Ags, correlating with dampened IgM and absent IgG3 responses. This phenotype was in part due to increased activity of the NF-κB subunit RelB. Moreover, p100(-/-) →B6 BM chimeras were more susceptible to infection by encapsulated Streptococcus pneumoniae bacteria, pathogens that induce TI-2 responses. In contrast to the TI-2 defect, p100 deficiency did not impair immune responses to the TI-1 Ag LPS and p100(-/-) MZ B cells showed normal Ag transportation into B-cell follicles. Furthermore, p100(-/-) MZ B and B-1 cells failed to respond to TI-2 Ags in the presence of WT accessory cells. Thus, NF-κB2/p100 deficiency caused a predominant B-cell-intrinsic TI-2 defect that could largely be attributed to impaired proliferation of plasmablasts. Importantly, p100 was also necessary for efficient defense against clinically relevant TI-2 pathogens.


Assuntos
Antígenos T-Independentes/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Subunidade p52 de NF-kappa B/deficiência , Animais , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Antígenos T-Independentes/metabolismo , Subpopulações de Linfócitos B/efeitos dos fármacos , Bactérias/imunologia , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Movimento Celular/genética , Citocinas/farmacologia , Predisposição Genética para Doença , Imunidade Humoral/genética , Camundongos , Camundongos Knockout , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Ligação Proteica , Transporte Proteico , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores Toll-Like/metabolismo , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo
11.
Histochem Cell Biol ; 143(3): 277-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25212661

RESUMO

The murine mCLCA5 protein is a member of the chloride channel regulators, calcium-activated (CLCA) family and is suspected to play a role in airway mucus cell differentiation. Although mCLCA5 mRNA was previously found in total lung extracts, the expressing cells and functions in the naive murine respiratory tract are unknown. Therefore, mCLCA5 protein expression was identified by immunohistochemistry and confocal laser scanning microscopy using entire lung sections of naive mice. Moreover, we determined mRNA levels of functionally related genes (mClca3, mClca5, Muc5ac and Muc5b) and quantified mCLCA5-, mCLCA3- and CC10-positive cells and periodic acid-Schiff-positive mucus cells in naive, PBS-treated or Staphylococcus aureus-infected mice. We also investigated mCLCA5 protein expression in Streptococcus pneumoniae and influenza virus lung infection models. Finally, we determined species-specific differences in the expression patterns of the murine mCLCA5 and its human and porcine orthologs, hCLCA2 and pCLCA2. The mCLCA5 protein is uniquely expressed in highly select bronchial epithelial cells and submucosal glands in naive mice, consistent with anatomical locations of progenitor cell niches. Under conditions of challenge (PBS, S. aureus, S. pneumoniae, influenza virus), mRNA and protein expression strongly declined with protein recovery only in models retaining intact epithelial cells. In contrast to mice, human and porcine bronchial epithelial cells do not express their respective mCLCA5 orthologs and submucosal glands had fewer expressing cells, indicative of fundamental differences in mice versus humans and pigs.


Assuntos
Canais de Cloreto/biossíntese , Canais de Cloreto/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Sistema Respiratório/citologia , Nicho de Células-Tronco , Animais , Canais de Cloreto/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sistema Respiratório/metabolismo , Suínos
12.
Am J Respir Cell Mol Biol ; 51(6): 730-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24960575

RESUMO

Lung diseases, including pneumonia and asthma, are among the most prevalent human disorders, and murine models have been established to investigate their pathobiology and develop novel treatment approaches. Whereas bronchoscopy is valuable for diagnostic and therapeutic procedures in patients, no equivalent for small rodents has been established. Here, we introduce a miniaturized video-bronchoscopy system offering new opportunities in experimental lung research. With an outer diameter of 0.75 mm, it is possible to advance the optics into the main bronchi of mice. An irrigation channel allows bronchoalveolar lavage and unilateral application of substances to one lung. Even a unilateral infection is possible, enabling researchers to use the contralateral lung as internal control.


Assuntos
Broncoscópios , Pulmão/patologia , Animais , Broncoscopia/métodos , Modelos Animais de Doenças , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Fatores Ativadores de Macrófagos/farmacologia , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/imunologia , Pneumonia Pneumocócica/diagnóstico , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/imunologia
13.
Nat Commun ; 15(1): 3468, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658571

RESUMO

Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.


Assuntos
Proteínas Ativadoras de GTPase , Glutamato Desidrogenase , Neocórtex , Neocórtex/metabolismo , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/citologia , Humanos , Animais , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Ácidos Cetoglutáricos/metabolismo , Neuroglia/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Camundongos , Ciclo do Ácido Cítrico/genética , Feminino
14.
J Antimicrob Chemother ; 68(9): 2111-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23633685

RESUMO

OBJECTIVES: Pneumonia is associated with a high morbidity and mortality worldwide. Streptococcus pneumoniae remains the most common cause of pneumonia, and pneumococcal antibiotic resistance is increasing. The purified bacteriophage endolysin Cpl-1 rapidly and specifically kills pneumococci. We tested the hypothesis that a single dose of recombinant aerosolized Cpl-1 would rescue mice with severe pneumococcal pneumonia. METHODS: Female C57Bl/6 mice (aged 8-12 weeks) were transnasally infected with pneumococci. When severe pneumonia was established 24 h after infection, mice were treated with 25 µL of aerosolized Cpl-1. Survival was monitored for 10 days and the pulmonary and systemic bacterial burdens were assessed. Furthermore, cytokines were quantified in bronchoalveolar lavage fluid, and lung morphology was analysed histologically. RESULTS: The endolysin efficiently reduced pulmonary bacterial counts and averted bacteraemia. Although concentrations of inflammatory cytokines were increased shortly after Cpl-1 inhalation, mice recovered rapidly, as shown by increasing body weight, and inflammatory infiltrates resolved in the lungs, leading to a reduction in mortality of 80%. CONCLUSIONS: Administration of Cpl-1 by inhalation may offer a new therapeutic perspective for the treatment of pneumococcal lung infection.


Assuntos
Antibacterianos/administração & dosagem , Bacteriófagos/enzimologia , Produtos Biológicos/administração & dosagem , Endopeptidases/administração & dosagem , Pneumonia Pneumocócica/tratamento farmacológico , Streptococcus pneumoniae/efeitos dos fármacos , Administração por Inalação , Animais , Antibacterianos/isolamento & purificação , Carga Bacteriana , Produtos Biológicos/isolamento & purificação , Modelos Animais de Doenças , Endopeptidases/isolamento & purificação , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Resultado do Tratamento
15.
J Immunol ; 187(1): 434-40, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21646297

RESUMO

Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1ß. This IL-1ß production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1ß production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.


Assuntos
Proteínas de Transporte/fisiologia , Variação Genética/imunologia , Inflamassomos/metabolismo , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/patologia , Estreptolisinas/genética , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Imunidade Inata/genética , Inflamassomos/fisiologia , Interleucina-18/fisiologia , Interleucina-1beta/biossíntese , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína Adaptadora de Sinalização NOD2/fisiologia , Pneumonia Pneumocócica/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Estreptolisinas/biossíntese , Estreptolisinas/deficiência , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor Toll-Like 9/fisiologia
16.
Science ; 377(6611): eabl6422, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074851

RESUMO

Neanderthal brains were similar in size to those of modern humans. We sought to investigate potential differences in neurogenesis during neocortex development. Modern human transketolase-like 1 (TKTL1) differs from Neanderthal TKTL1 by a lysine-to-arginine amino acid substitution. Using overexpression in developing mouse and ferret neocortex, knockout in fetal human neocortical tissue, and genome-edited cerebral organoids, we found that the modern human variant, hTKTL1, but not the Neanderthal variant, increases the abundance of basal radial glia (bRG) but not that of intermediate progenitors (bIPs). bRG generate more neocortical neurons than bIPs. The hTKTL1 effect requires the pentose phosphate pathway and fatty acid synthesis. Inhibition of these metabolic pathways reduces bRG abundance in fetal human neocortical tissue. Our data suggest that neocortical neurogenesis in modern humans differs from that in Neanderthals.


Assuntos
Homem de Neandertal , Neocórtex , Neurogênese , Transcetolase , Animais , Células Ependimogliais/citologia , Furões , Humanos , Camundongos , Homem de Neandertal/embriologia , Homem de Neandertal/genética , Neocórtex/embriologia , Neurogênese/genética , Neurogênese/fisiologia , Transcetolase/genética , Transcetolase/metabolismo
17.
Vaccine ; 40(7): 1038-1046, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35033388

RESUMO

Streptococcus pneumoniae (S. pneumoniae)infections are the leading cause of child mortality globally. Currentvaccines fail to induceaprotective immune response towards a conserved part of the pathogen,resulting in newserotypescausing disease. Therefore, new vaccinestrategies are urgently needed.Described is atwo-pronged approach combiningS. pneumoniaeproteins, pneumolysin (Ply) and pneumococcal surface protein A (PspA),with aprecisely defined synthetic oligosaccharide,wherebythe carrier protein actsas a serotype-independent antigen to provideadditional protection. Proof of concept in mice and swine modelsrevealed thatthe conjugatesinhibited colonization of the nasopharynx, decreased the bacterial load and reduced disease severity in the bacteria challenge model. Immunization of piglets provided the first evidence for the immunogenicity and protective potential of synthetic glycoconjugate vaccine in a large animal model.Acombination of synthetic oligosaccharides with proteins from the target pathogen opens the path to create broadly cross-protective ("universal") pneumococcal vaccines.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Anticorpos Antibacterianos , Proteínas de Bactérias , Glicoconjugados , Camundongos , Vacinas Pneumocócicas , Sorogrupo , Suínos
18.
Sci Transl Med ; 14(674): eabg8577, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475904

RESUMO

Pneumonia is the most common cause of the acute respiratory distress syndrome (ARDS). Here, we identified loss of endothelial cystic fibrosis transmembrane conductance regulator (CFTR) as an important pathomechanism leading to lung barrier failure in pneumonia-induced ARDS. CFTR was down-regulated after Streptococcus pneumoniae infection ex vivo or in vivo in human or murine lung tissue, respectively. Analysis of isolated perfused rat lungs revealed that CFTR inhibition increased endothelial permeability in parallel with intracellular chloride ion and calcium ion concentrations ([Cl-]i and [Ca2+]i). Inhibition of the chloride ion-sensitive with-no-lysine kinase 1 (WNK1) protein with tyrphostin 47 or WNK463 replicated the effect of CFTR inhibition on endothelial permeability and endothelial [Ca2+]i, whereas WNK1 activation by temozolomide attenuated it. Endothelial [Ca2+]i transients and permeability in response to inhibition of either CFTR or WNK1 were prevented by inhibition of the cation channel transient receptor potential vanilloid 4 (TRPV4). Mice deficient in Trpv4 (Trpv4-/-) developed less lung edema and protein leak than their wild-type littermates after infection with S. pneumoniae. The CFTR potentiator ivacaftor prevented lung CFTR loss, edema, and protein leak after S. pneumoniae infection in wild-type mice. In conclusion, lung infection caused loss of CFTR that promoted lung edema formation through intracellular chloride ion accumulation, inhibition of WNK1, and subsequent disinhibition of TRPV4, resulting in endothelial calcium ion influx and vascular barrier failure. Ivacaftor prevented CFTR loss in the lungs of mice with pneumonia and may, therefore, represent a possible therapeutic strategy in people suffering from ARDS due to severe pneumonia.


Assuntos
Cloretos , Pneumonia , Humanos , Camundongos , Animais , Cálcio , Pulmão , Regulador de Condutância Transmembrana em Fibrose Cística , Canais de Cátion TRPV
19.
Pulm Pharmacol Ther ; 23(4): 334-44, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20362688

RESUMO

The ability of synthetic small interfering RNA (siRNA) to silence gene expression makes it a useful tool in biomedical research. However, effective and non-toxic functional siRNA delivery to mouse lungs in vivo is still a key challenge, and regulation of constitutively expressed genes is poorly characterized. Following in vitro validation of siRNA molecules, naked, stabilized siRNA (AtuRNAi) was applied intranasally (i.n.) by droplets or intratracheally (i.t.) by MicroSprayer in female C57BL/6 mice. Distribution of Cy3-tagged siRNAs was examined. Pulmonary expression of ubiquitously (lamin B1) or cell-specific (E-cadherin, VE-cadherin), constitutive genes was analysed by TaqMan-realtime-PCR. Further, formulated lipoplex-siRNA, which has enhanced transfection efficiency, was applied i.t. or intravenously (i.v.). Single i.t. as compared to i.n. application of unformulated siRNA resulted in higher delivery efficiency and homogenous pulmonary distribution. After inhalation of target-specific siRNA, reduction of epithelial E-cadherin by 21%, but no significant reduction of endothelial VE-cadherin or ubiquitously expressed lamin B1 was observed. Pharmacokinetic analysis revealed rapid transfer of intact siRNA molecules into the vascular system and accumulation in the kidneys, calling lung specificity into question. I.t. application of lipoplex-siRNA evoked inflammation. In contrast, i.v. application of lipoplex-siRNA specifically reduced expression of VE-cadherin mRNA by about 50% in lungs without evoking lung cellular influx. In conclusion, sufficient pulmonary distribution of aerosolized siRNA was attained in mice by MicroSprayer, however development of appropriate siRNA carriers is highly desirable to improve lung-specific functional inhalative siRNA delivery. Pulmonary knockdown of constitutive endothelial targets by 50% was achieved by i.v. application of lipoplex-siRNA.


Assuntos
Regulação da Expressão Gênica , Inativação Gênica , Técnicas de Transferência de Genes , RNA Interferente Pequeno/administração & dosagem , Administração Intranasal , Animais , Antígenos CD/genética , Caderinas/genética , Feminino , Marcação de Genes/métodos , Inflamação/genética , Lamina Tipo B/genética , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacocinética , Distribuição Tecidual , Traqueia
20.
Am J Respir Cell Mol Biol ; 40(4): 474-81, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18931326

RESUMO

Community-acquired pneumonia (CAP) is associated with high morbidity and mortality, and Streptococcus pneumoniae is the most prevalent causal pathogen identified in CAP. Impaired pulmonary host defense increases susceptibility to pneumococcal pneumonia. S. pneumoniae may up-regulate Toll-like receptor (TLR)-2 expression and activate TLR-2, contributing to pneumococcus-induced immune responses. In the current study, the course of severe murine pneumococcal pneumonia after pulmonary TLR-2-mediated immunostimulation with synthetic macrophage-activating lipopeptide-2 (MALP-2) was examined. Intratracheal MALP-2 application evoked enhanced proinflammatory cytokine and chemokine release, resulting in recruitment of polymorphonuclear neutrophils (PMN), macrophages, and lymphocytes into the alveolar space in WT, but not in TLR-2-deficient mice. In murine lungs as well as in human alveolar epithelial cells (A549), MALP-2 increased TLR-2 expression at both mRNA and protein level. Blood leukocyte numbers and populations remained unchanged. MALP-2 application 24 hours before intranasal pneumococcal infection resulted in increased levels of CCL5 associated with augmented leukocyte recruitment, and decreased levels of anti-inflammatory IL-10 in bronchoalveolar lavage fluid. Clinically, MALP-2-treated as compared with untreated mice showed increased survival, reduced hypothermia, and increased body weight. MALP-2 also reduced bacteremia and improved bacterial clearance in lung parenchyma, as examined by immunohistochemistry. In conclusion, pulmonary immunostimulation with MALP-2 before infection with S. pneumoniae improved local host defense and increased survival in murine pneumococcal pneumonia.


Assuntos
Imunização , Lipopeptídeos/imunologia , Pneumonia Pneumocócica/imunologia , Animais , Bacteriemia/complicações , Bacteriemia/imunologia , Bacteriemia/patologia , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Leucócitos/microbiologia , Lipopeptídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Pneumonia Pneumocócica/complicações , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA