Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39299239

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an inherited disorder of vascular malformations characterized by mucocutaneous telangiectases and arteriovenous malformations (AVMs) in internal organs. HHT is caused by inheritance of a loss of function mutation in one of three genes. Although individuals with HHT are haploinsufficient for one of these genes throughout their entire body, rather than exhibiting a systemic vascular phenotype, vascular malformations occur as focal lesions in discrete anatomic locations. The inconsistency between genotype and phenotype has provoked debate over whether haploinsufficiency or a different mechanism gives rise to the vascular malformations. We previously showed that HHT-associated skin telangiectases develop by a two-hit mutation mechanism in an HHT gene. However, somatic mutations were identified in only half of the telangiectases, raising the question whether a second-hit somatic mutation is a necessary (required) event in HHT pathogenesis. Here, we show that another mechanism for the second hit is loss of heterozygosity across the chromosome bearing the germline mutation. Secondly, we investigate the two-hit mutation mechanism for internal organ AVMs, the source of much of the morbidity of HHT. Here, we identified somatic molecular genetic events in eight liver telangiectases, including point mutations and a loss of heterozygosity event. We also identified somatic mutations in one pulmonary AVM and two brain AVMs, confirming that mucocutaneous and internal organ vascular malformations undergo the same molecular mechanisms. Together, these data argue that bi-allelic loss of function in an HHT gene is a required event in the pathogenesis of HHT-associated vascular malformations.

2.
PLoS Genet ; 19(10): e1010952, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37782669

RESUMO

Heterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the potential groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated global developmental delay, impaired ultrasonic vocalizations, cognitive dysfunction and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum-a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlights the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.


Assuntos
Haploinsuficiência , Transcriptoma , Animais , Humanos , Camundongos , Haploinsuficiência/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Neurônios/metabolismo , RNA/metabolismo , Convulsões/genética , Transcriptoma/genética
3.
Mol Genet Genomic Med ; 11(1): e2097, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374045

RESUMO

PURPOSE: Drug development strategies for genetic diseases depend critically on accurate knowledge of how pathogenic variants cause disease. For some well-studied genes, the direct effects of pathogenic variants are well documented as loss-of-function, gain-of-function or hypermorphic, or a combination of the two. For many genes, however, even the direction of effect of variants remains unclear. Classification of Mendelian disease genes in terms of whether pathogenic variants are loss- or gain-of-function would directly inform drug development strategies. METHODS: We leveraged the recent dramatic increase in reported pathogenic variants to provide a novel approach to inferring the direction of effect of pathogenic variants. Specifically, we quantify the ratio of reported pathogenic variants that are missense compared to loss-of-function. RESULTS: We first show that for many genes that cause dominant Mendelian disease, the ratio of reported pathogenic missense variants is diagnostic of whether the gene causes disease through loss- or gain-of-function, or a combination. Second, we identify a set of genes that appear to cause disease largely or entirely through gain-of-function or hypermorphic pathogenic variants. CONCLUSIONS: We suggest a set of 16 genes suitable for drug developmental efforts utilizing direct inhibition.


Assuntos
Doenças Genéticas Inatas , Humanos , Mutação de Sentido Incorreto , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/tratamento farmacológico , Doenças Genéticas Inatas/genética , Desenvolvimento de Medicamentos , Mutação com Perda de Função , Mutação com Ganho de Função
4.
Nat Commun ; 14(1): 7009, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919320

RESUMO

Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Proteína KRIT1/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Reguladoras de Apoptose/genética , Mutação , Análise de Sequência de DNA
5.
iScience ; 26(1): 105797, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36594023

RESUMO

Generating effective therapies for neurodevelopmental disorders has remained elusive. An emerging drug discovery approach for neurodevelopmental disorders is to characterize transcriptome-wide dysregulation in an appropriate model system and screen therapeutics based on their capacity to restore functionally relevant expression patterns. We characterized transcriptomic dysregulation in a human model of HNRNPU-related disorder to explore the potential of such a paradigm. We identified widespread dysregulation in functionally relevant pathways and then compared dysregulation in a human model to transcriptomic differences in embryonic and perinatal mice to determine whether dysregulation in an in vitro human model is partially replicated in an in vivo model of HNRNPU-related disorder. Strikingly, we find enrichment of co-dysregulation between 45-day-old human organoids and embryonic, but not perinatal, mice from distinct models of HNRNPU-related disorder. Thus, hnRNPU deficient human organoids may only be suitable to model transcriptional dysregulation in certain cell types within a specific developmental time window.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA