RESUMO
Cell entry of AAV vectors is initiated by contacting the cell surface attachment receptor. This process can be rationally engineered through mutating the contact residues on the AAV capsid and covalently coupling targeting ligands to the capsid surface that exhibit high affinity for a cell surface protein of choice. This way, selective gene delivery to target-receptor positive cell types has been achieved. Two methods for coupling targeting ligands to the AAV capsid can be distinguished. Genetic coupling is achieved through expressing fusion proteins composed of the capsid protein VP2 and the targeting ligand in packaging cells. Biochemical coupling involves split-intein-mediated protein trans-splicing between the mutated AAV capsid and the targeting ligand. While genetic coupling is restricted to designed ankyrin repeat proteins as targeting ligand, biochemical coupling tolerates single-chain antibody fragments as well.
Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Ligantes , Animais , Produtos Biológicos/isolamento & purificação , Linhagem Celular , Cromatografia de Afinidade , Cromatografia em Gel , Dependovirus/isolamento & purificação , Vetores Genéticos/isolamento & purificação , Humanos , Especificidade de Órgãos , Ligação Proteica , Transdução GenéticaRESUMO
Immune checkpoint inhibitors (ICIs) can block distinct receptors on T cells or tumor cells thus preventing T cell inactivation and tumor immune escape. While the clinical response to treatment with ICIs in cancer patients is impressive, this therapy is often associated with a number of immune-related adverse events. There is therefore a need to explore innovative strategies of tumor-specific delivery of ICIs. Delivery of therapeutic proteins on a genetic level can be accomplished with viral vectors including those derived from adeno-associated virus (AAV). Here, we assessed the tumor-targeted Her2-AAV, a receptor-targeted AAV vector binding to the tumor antigen Her2/neu for cell entry, as vehicle for ICI gene delivery. Initially, we packaged the coding sequence of a scFv-Fc fusion protein directed against mouse programmed cell death protein-1 (PD-1) into Her2-AAV. Upon transduction of Her2/neu+ RENCA cells, AAV-encoded αPD-1 was readily detectable in the cell culture supernatant and revealed specific binding to its target antigen. In vivo, in BALB/c mice bearing subcutaneous RENCA-Her2/neu tumors, Her2-AAV mediated specific gene delivery into tumor tissue upon intravenous administration as verified by luciferase gene transfer and in vivo imaging thus demonstrating unimpaired tumor-targeting by Her2-AAV vectors in immunocompetent animals. When delivering the αPD-1 gene, levels of ICI were similar in tumor tissue for Her2-AAV and AAV2 but substantially reduced in liver for Her2-AAV. When combined with chemotherapy a tendency for reduced progression of tumor growth was documented for Her2-AAV treated mice. To get closer to the clinical situation, AAV constructs that deliver the complete coding sequence of the therapeutic antibody nivolumab which is directed against human PD-1 were generated next. The AAV-Nivolumab constructs were expressed and released from transduced MDA-MB-453 cells in vitro and from RENCA-Her2/neu cells upon intratumoral as well as intravenous administration in vivo. Antibody processing and expression levels were further improved through optimization of construct design. In conclusion, we provide proof-of-principle for redirecting the biodistribution of ICIs from liver and serum to tumor tissue by the use of engineered AAV vectors. This strategy can be easily combined with other types of immunotherapeutic concepts.
RESUMO
Classical Hodgkin lymphoma (cHL) is a hematopoietic malignancy with a characteristic cellular composition. The tumor mass is made up of infiltrated lymphocytes and other cells of hematologic origin but only very few neoplastic cells that are mainly identified by the diagnostic marker CD30. While most patients with early stage cHL can be cured by standard therapy, treatment options for relapsed or refractory cHL are still not sufficient, although immunotherapy-based approaches for the treatment of cHL patients have gained ground in the last decade. Here, we suggest a novel therapeutic concept based on oncolytic viruses selectively destroying the CD30+-positive cHL tumor cells. Relying on a recently described CD30-specific scFv we have generated CD30-targeted measles virus (MV-CD30) and vesicular stomatitis virus (VSV-CD30). For VSV-CD30 the VSV glycoprotein G reading frame was replaced by those of the CD30-targeted MV glycoproteins. Both viruses were found to be highly selective for CD30-positive cells as demonstrated by infection of co-cultures of target and non-target cells as well as through blocking infection by soluble CD30. Notably, VSV-CD30 yielded much higher titers than MV-CD30 and resulted in a more rapid and efficient killing of cultivated cHL-derived cell lines. Mouse tumor models revealed that intratumorally, as well as systemically injected VSV-CD30, infected cHL xenografts and significantly slowed down tumor growth resulting in a substantially prolonged survival of tumor-bearing mice. Taken together, the data support further preclinical testing of VSV-CD30 as novel therapeutic agent for the treatment of cHL and other CD30+-positive malignancies.
RESUMO
We have established a novel approach for the covalent coupling of large polypeptides to the surface of fully assembled adeno-associated viral gene transfer vector (AAV) particles via split-intein mediated protein-trans-splicing (PTS). This way, we achieved selective gene transfer to distinct cell types. Single-chain variable fragments (scFvs) or designed ankyrin repeat proteins (DARPins), exhibiting high-affinity binding to cell surface receptors selectively expressed on the surface of target cells, were coupled to AAV particles harboring mutations in the capsid proteins which ablate natural receptor usage. Both, the AAV capsid protein VP2 and multiple separately produced targeting ligands recognizing Her2/neu, EpCAM, CD133 or CD30 were genetically fused with complementary split-intein domains. Optimized coupling conditions led to an effective conjugation of each targeting ligand to the universal AAV capsid and translated into specific gene transfer into target receptor-positive cell types in vitro and in vivo. Interestingly, PTS-based AAVs exhibited significantly less gene transfer into target receptor-negative cells than AAVs displaying the same targeting ligand but coupled genetically. Another important consequence of the PTS technology is the possibility to now display scFvs or other antibody-derived domain formats harboring disulfide-bonds in a functionally active form on the surface of AAV particles. Hence, the custom combination of a universal AAV vector particle and targeting ligands of various formats allows for an unprecedented flexibility in the generation of gene transfer vectors targeted to distinct cell types.