Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1958): 20211394, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34465240

RESUMO

Human encroachment into natural habitats is typically followed by conflicts derived from wildlife damage to agriculture and livestock. Spatial risk modelling is a useful tool to gain the understanding of wildlife damage and mitigate conflicts. Although resource selection is a hierarchical process operating at multiple scales, risk models usually fail to address more than one scale, which can result in the misidentification of the underlying processes. Here, we addressed the multi-scale nature of wildlife damage occurrence by considering ecological and management correlates interacting from household to landscape scales. We studied brown bear (Ursus arctos) damage to apiaries in the North-eastern Carpathians as our model system. Using generalized additive models, we found that brown bear tendency to avoid humans and the habitat preferences of bears and beekeepers determine the risk of bear damage at multiple scales. Damage risk at fine scales increased when the broad landscape context also favoured damage. Furthermore, integrated-scale risk maps resulted in more accurate predictions than single-scale models. Our results suggest that principles of resource selection by animals can be used to understand the occurrence of damage and help mitigate conflicts in a proactive and preventive manner.


Assuntos
Animais Selvagens , Ursidae , Agricultura , Animais , Ecossistema , Humanos
2.
Proc Biol Sci ; 287(1922): 20192643, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32126954

RESUMO

Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.


Assuntos
Conservação dos Recursos Naturais , Animais , Evolução Biológica , Tamanho Corporal , Extinção Biológica
3.
Ecol Lett ; 22(8): 1297-1305, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31190431

RESUMO

Zoogeographical regions, or zooregions, are areas of the Earth defined by species pools that reflect ecological, historical and evolutionary processes acting over millions of years. Consequently, researchers have assumed that zooregions are robust and unlikely to change on a human timescale. However, the increasing number of human-mediated introductions and extinctions can challenge this assumption. By delineating zooregions with a network-based algorithm, here we show that introductions and extinctions are altering the zooregions we know today. Introductions are homogenising the Eurasian and African mammal zooregions and also triggering less intuitive effects in birds and amphibians, such as dividing and redefining zooregions representing the Old and New World. Furthermore, these Old and New World amphibian zooregions are no longer detected when considering introductions plus extinctions of the most threatened species. Our findings highlight the profound and far-reaching impact of human activity and call for identifying and protecting the uniqueness of biotic assemblages.


Assuntos
Anfíbios , Aves , Espécies em Perigo de Extinção , Atividades Humanas , Animais , Biodiversidade , Conservação dos Recursos Naturais , Extinção Biológica , Humanos , Mamíferos
4.
Proc Biol Sci ; 286(1896): 20182019, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963928

RESUMO

Social networks are the result of interactions between individuals at different temporal scales. Thus, sporadic intergroup encounters and individual forays play a central role in defining the dynamics of populations in social species. We assessed the rate of intergroup encounters for three western lowland gorilla ( Gorilla gorilla gorilla) groups with daily observations over 5 years, and non-invasively genotyped a larger population over four months. Both approaches revealed a social system much more dynamic than anticipated, with non-aggressive intergroup encounters that involved social play by immature individuals, exchanges of members between groups likely modulated by kinship, and absence of infanticide evidenced by infants not fathered by the silverback of the group where they were found. This resulted in a community composed of groups that interacted frequently and not-aggressively, contrasting with the more fragmented and aggressive mountain gorilla ( G. beringei beringei) societies. Such extended sociality can promote the sharing of behavioural and cultural traits, but might also increase the susceptibility of western lowland gorillas to infectious diseases that have decimated their populations in recent times.


Assuntos
Gorilla gorilla/psicologia , Comportamento Social , Animais , Congo , Feminino , Masculino
5.
Mol Biol Evol ; 34(11): 2893-2907, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962023

RESUMO

There is the tendency to assume that endangered species have been both genetically and demographically healthier in the past, so that any genetic erosion observed today was caused by their recent decline. The Iberian lynx (Lynx pardinus) suffered a dramatic and continuous decline during the 20th century, and now shows extremely low genome- and species-wide genetic diversity among other signs of genomic erosion. We analyze ancient (N = 10), historical (N = 245), and contemporary (N = 172) samples with microsatellite and mitogenome data to reconstruct the species' demography and investigate patterns of genetic variation across space and time. Iberian lynx populations transitioned from low but significantly higher genetic diversity than today and shallow geographical differentiation millennia ago, through a structured metapopulation with varying levels of diversity during the last centuries, to two extremely genetically depauperate and differentiated remnant populations by 2002. The historical subpopulations show varying extents of genetic drift in relation to their recent size and time in isolation, but these do not predict whether the populations persisted or went finally extinct. In conclusion, current genetic patterns were mainly shaped by genetic drift, supporting the current admixture of the two genetic pools and calling for a comprehensive genetic management of the ongoing conservation program. This study illustrates how a retrospective analysis of demographic and genetic patterns of endangered species can shed light onto their evolutionary history and this, in turn, can inform conservation actions.


Assuntos
Lynx/genética , Análise de Sequência de DNA/métodos , Animais , Conservação dos Recursos Naturais , DNA Antigo/análise , Espécies em Perigo de Extinção , Extinção Biológica , Deriva Genética , Variação Genética/genética , Genoma , Genoma Mitocondrial/genética , Repetições de Microssatélites/genética
6.
Nature ; 486(7401): 52-8, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22678279

RESUMO

Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale 'tipping point' highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.


Assuntos
Mudança Climática/estatística & dados numéricos , Planeta Terra , Ecossistema , Modelos Teóricos , Animais , Monitoramento Ambiental , Previsões , Atividades Humanas , Humanos
8.
Evol Appl ; 17(5): e13677, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721591

RESUMO

Conservation is prioritized based on accepted taxa. As a consequence, a conservation incentive exists to emphasize inter-population differences to define taxa, potentially leading to taxonomic inflation. But stressing the uniqueness of threatened populations has the side effect of hindering conservation actions that promote inter-population gene flow, such as genetic rescue. These actions may be of critical importance for severely inbred populations involved in extinction vortices, for which an inflated taxonomy can become a conservation trap. Here, we exemplify this scenario with the western capercaillie (Tetrao urogallus, Phasianidae) population in the Cantabrian Mountains, described and legally listed as a subspecies not supported by recent molecular data. The Cantabrian capercaillie population is Critically Endangered after a long-lasting decline and a recent demographic collapse. It shows clear signs of inbreeding depression, including striking clutch size decreases as well as reduced hatchability and chick survival. This critical situation could be alleviated through a genetic rescue, but this possibility is hindered by inertias rooted in the putative uniqueness of the Cantabrian capercaillie. It had been previously argued that poor taxonomy could hamper conservation, through the oblivion of populations deserving, but not having, a taxonomic status. We show that taxonomic inflation can also become an obstacle for effective conservation.

9.
Ecol Lett ; 16(2): 242-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23216830

RESUMO

Anthropogenic degradation of the world's ecosystems is leading to a widespread and accelerating loss of biodiversity. However, not all species respond equally to existing threats, raising the question: what makes a species more vulnerable to extinction? We propose that higher intraspecific variability may reduce the risk of extinction, as different individuals and populations within a species may respond differently to occurring threats. Supporting this prediction, our results show that mammalian species with more variable adult body masses, litter sizes, sexual maturity ages and population densities are less vulnerable to extinction. Our findings reveal the role of local variation among populations, particularly of large mammals, as a buffering mechanism against extinction, and emphasise the importance of considering trait variation in comparative analyses and conservation management.


Assuntos
Extinção Biológica , Mamíferos/fisiologia , Fatores Etários , Animais , Peso Corporal , Espécies em Perigo de Extinção , Feminino , Tamanho da Ninhada de Vivíparos , Masculino , Densidade Demográfica
10.
J Anim Ecol ; 82(2): 290-300, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23039315

RESUMO

Movement is fundamental to individual and population dynamics, as it allows individuals to meet their basic requirements. Although movement patterns reflect interactions between internal and external factors, only few studies have examined the effects of these factors on movement simultaneously, and they generally focused on particular biological contexts (e.g. dispersal, foraging). However, the relative importance of these factors in driving individual routine movements might reflect a species' potential flexibility to cope with landscape changes and therefore buffer their potential impact on fitness. We used data from GPS collars on Scandinavian brown bears to investigate the relative role of these factors, as well as an additional factor (period of the year) on routine movements at two spatial scales (hourly and daily relocations). As expected, internal factors played a major role in driving movement, compared to external factors at both scales, but its relative importance was greater at a finer scale. In particular, the interaction between reproductive status and period of the year was one of the most influential variables, females being constrained by the movement capacity of their cubs in the first periods of the year. The effect of human disturbance on movement was also greater for females with cubs than for lone females. This study showed how reciprocal modulation of internal and external factors is shaping space use of brown bears. We stress that these factors should be studied simultaneously to avoid the risk of obtaining context-dependent inferences. Moreover, the study of their relative contribution is also highly relevant in the context of multiple-use landscapes, as human activities generally affect the landscape more than they affect the internal states of an individual. Species or individuals with important internal constraints should be less responsive to changes in their environment as they have less freedom from internal constraints and should thus be more sensitive to human alteration of the landscape, as shown for females with cubs in this study.


Assuntos
Atividade Motora/fisiologia , Ursidae/fisiologia , Envelhecimento , Sistemas de Identificação Animal , Animais , Demografia , Ecossistema , Comportamento Alimentar , Feminino , Reprodução
11.
J Anim Ecol ; 81(1): 150-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21815891

RESUMO

1. Identifying general patterns of how and why survival rates vary across space and time is necessary to truly understand population dynamics of a species. However, this is not an easy task given the complexity and interactions of processes involved, and the interpopulation differences in main survival determinants. 2. Here, using European rabbits (Oryctolagus cuniculus) as a model and information from local studies, we investigated whether we could make inferences about trends and drivers of survival of a species that are generalizable to large spatio-temporal scales. To do this, we first focused on overall survival and then examined cause-specific mortalities, mainly predation and diseases, which may lead to those patterns. 3. Our results show that within the large-scale variability in rabbit survival, there exist general patterns that are explained by the integration of factors previously known to be important at the local level (i.e. age, climate, diseases, predation or density dependence). We found that both inter- and intrastudy survival rates increased in magnitude and decreased in variability as rabbits grow old, although this tendency was less pronounced in populations with epidemic diseases. Some causes leading to these higher mortalities in young rabbits could be the stronger effect of rainfall at those ages, as well as, other death sources like malnutrition or infanticide. 4. Predation is also greater for newborns and juveniles, especially in population without diseases. Apart from the effect of diseases, predation patterns also depended on factors, such as, density, season, and type and density of predators. Finally, we observed that infectious diseases also showed general relationships with climate, breeding (i.e. new susceptible rabbits) and age, although the association type varied between myxomatosis and rabbit haemorrhagic disease. 5. In conclusion, large-scale patterns of spatio-temporal variability in rabbit survival emerge from the combination of different factors that interrelate both directly and through density dependence. This highlights the importance of performing more comprehensive studies to reveal combined effects and complex relationships that help us to better understand the mechanisms underlying population dynamics.


Assuntos
Envelhecimento , Infecções por Caliciviridae/veterinária , Meio Ambiente , Mixomatose Infecciosa/mortalidade , Coelhos/fisiologia , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/mortalidade , Infecções por Caliciviridae/virologia , Cadeia Alimentar , Vírus da Doença Hemorrágica de Coelhos/fisiologia , Modelos Biológicos , Myxoma virus/fisiologia , Mixomatose Infecciosa/epidemiologia , Mixomatose Infecciosa/virologia , Dinâmica Populacional
12.
J Anim Ecol ; 81(6): 1211-1222, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22640486

RESUMO

1. Comparative analyses are used to address the key question of what makes a species more prone to extinction by exploring the links between vulnerability and intrinsic species' traits and/or extrinsic factors. This approach requires comprehensive species data but information is rarely available for all species of interest. As a result comparative analyses often rely on subsets of relatively few species that are assumed to be representative samples of the overall studied group. 2. Our study challenges this assumption and quantifies the taxonomic, spatial, and data type biases associated with the quantity of data available for 5415 mammalian species using the freely available life-history database PanTHERIA. 3. Moreover, we explore how existing biases influence results of comparative analyses of extinction risk by using subsets of data that attempt to correct for detected biases. In particular, we focus on links between four species' traits commonly linked to vulnerability (distribution range area, adult body mass, population density and gestation length) and conduct univariate and multivariate analyses to understand how biases affect model predictions. 4. Our results show important biases in data availability with c.22% of mammals completely lacking data. Missing data, which appear to be not missing at random, occur frequently in all traits (14-99% of cases missing). Data availability is explained by intrinsic traits, with larger mammals occupying bigger range areas being the best studied. Importantly, we find that existing biases affect the results of comparative analyses by overestimating the risk of extinction and changing which traits are identified as important predictors. 5. Our results raise concerns over our ability to draw general conclusions regarding what makes a species more prone to extinction. Missing data represent a prevalent problem in comparative analyses, and unfortunately, because data are not missing at random, conventional approaches to fill data gaps, are not valid or present important challenges. These results show the importance of making appropriate inferences from comparative analyses by focusing on the subset of species for which data are available. Ultimately, addressing the data bias problem requires greater investment in data collection and dissemination, as well as the development of methodological approaches to effectively correct existing biases.


Assuntos
Conservação dos Recursos Naturais , Coleta de Dados , Espécies em Perigo de Extinção , Extinção Biológica , Mamíferos/fisiologia , Animais , Bases de Dados Factuais , Modelos Biológicos , Análise Multivariada , Densidade Demográfica
13.
Conserv Biol ; 26(4): 689-97, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22731698

RESUMO

Theory suggests that demographic and genetic traits deteriorate (i.e., fitness and genetic diversity decrease) when populations become small, and that such deterioration could precipitate positive feedback loops called extinction vortices. We examined whether demographic attributes and genetic traits have changed over time in one of the 2 remaining small populations of the highly endangered Iberian lynx (Lynx pardinus) in Doñana, Spain. From 1983 to 2008, we recorded nontraumatic mortality rates, litter size, offspring survival, age at territory acquisition, and sex ratio. We combined these demographic attributes with measures of inbreeding and genetic diversity at neutral loci (microsatellites) and genes subjected to selection (major histocompatibility complex). Data on demographic traits were obtained through capture and radio tracking, checking dens during breeding, track surveys, and camera trapping. For genetic analyses, we obtained blood or tissue samples from captured or necropsied individuals or from museum specimens. Over time a female-biased sex ratio developed, age of territory acquisition decreased, mean litter size decreased, and rates of nontraumatic mortality increased, but there were no significant changes in overall mortality rates, standardized individual heterozygosity declined steadily, and allelic diversity of exon 2 of class II major histocompatibility complex DRB genes remained constant (2 allelic variants present in all individuals analyzed). Changes in sex ratio and age of territory acquisition may have resulted from demographic stochasticity, whereas changes in litter size and nontraumatic mortality may be related to observed increases in inbreeding. Concomitant deterioration of both demographic attributes and genetic traits is consistent with an extinction vortex. The co-occurrence, with or without interaction, of demographic and genetic deterioration may explain the lack of success of conservation efforts with the Doñana population of Iberian lynx.


Assuntos
Espécies em Perigo de Extinção , Extinção Biológica , Variação Genética , Lynx/fisiologia , Animais , Política Ambiental , Feminino , Masculino , Dinâmica Populacional , Espanha
14.
Biol Rev Camb Philos Soc ; 97(2): 466-480, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34664396

RESUMO

Dispersal is a key demographic process involving three stages: emigration, transience and settlement; each of which is influenced by individual, social and environmental determinants. An integrated understanding of species dispersal is essential for demographic modelling and conservation planning. Here, we review the dispersal patterns and determinants documented in the scientific literature for the grey wolf (Canis lupus) across its distribution range. We showed a surprisingly high variability within and among study areas on all dispersal parameters - dispersal rate, direction, distance, duration and success. We found that such large variability is due to multiple individual, social and environmental determinants, but also due to previously overlooked methodological research issues. We revealed a potential non-linear relationship between dispersal rate and population density, with dispersal rate higher at both ends of the gradient of population density. We found that human-caused mortality reduces distance, duration and success of dispersal events. Furthermore, dispersers avoid interaction with humans, and highly exposed areas like agricultural lands hamper population connectivity in many cases. We identified numerous methodological research problems that make it difficult to obtain robust estimates of dispersal parameters and robust inferences on dispersal patterns and their determinants. In particular, analyses where confounding factors were not accounted for led to substantial knowledge gaps on all aspects of dispersal in an otherwise much-studied species. Our understanding of wolf biology and management would significantly benefit if wolf dispersal studies reported the results and possible factors affecting wolf dispersal more transparently.


Assuntos
Lobos , Animais , Densidade Demográfica
15.
Conserv Biol ; 25(1): 4-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21091768

RESUMO

The Iberian lynx (Lynx pardinus) may be the first charismatic felid to become extinct in a high-income country, despite decades of study and much data that show extinction is highly probable. The International Union for Conservation of Nature categorizes it as critically endangered; about 200 free-ranging individuals remain in two populations in southern Spain. Conservation measures aimed at averting extirpation have been extensively undertaken with 4 of the former 10 Iberian lynx populations recorded 25 years ago. Two of the four populations have been extirpated. The number of individuals in the third population have declined by 83%, and in the fourth the probability of extirpation has increased from 34% to 95%. Major drivers of the pending extinction are the small areas to which conservation measures have been applied; lack of incorporation of evidence-based conservation, scientific monitoring, and adaptive management into conservation efforts; a lack of continuity in recovery efforts, and distrust by conservation agencies of scientific information. In contrast to situations in which conservation and economic objectives conflict, in the case of the Iberian lynx all stakeholders desire the species to be conserved.


Assuntos
Espécies em Perigo de Extinção , Extinção Biológica , Lynx/fisiologia , Animais , Política Ambiental , Feminino , Masculino , População , Espanha
16.
Proc Natl Acad Sci U S A ; 105(49): 19120-5, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19060193

RESUMO

The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth-death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.


Assuntos
Migração Animal , Comportamento de Retorno ao Território Vital , Lynx/fisiologia , Modelos Biológicos , Animais , Feminino , Masculino , Movimento , Dinâmica Populacional , Espanha
17.
Proc Natl Acad Sci U S A ; 105(49): 19060-5, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19060194

RESUMO

Movement is important to all organisms, and accordingly it is addressed in a huge number of papers in the literature. Of nearly 26,000 papers referring to movement, an estimated 34% focused on movement by measuring it or testing hypotheses about it. This enormous amount of information is difficult to review and highlights the need to assess the collective completeness of movement studies and identify gaps. We surveyed 1,000 randomly selected papers from 496 journals and compared the facets of movement studied with a suggested framework for movement ecology, consisting of internal state (motivation, physiology), motion and navigation capacities, and external factors (both the physical environment and living organisms), and links among these components. Most studies simply measured and described the movement of organisms without reference to ecological or internal factors, and the most frequently studied part of the framework was the link between external factors and motion capacity. Few studies looked at the effects on movement of navigation capacity, or internal state, and those were mainly from vertebrates. For invertebrates and plants most studies were at the population level, whereas more vertebrate studies were conducted at the individual level. Consideration of only population-level averages promulgates neglect of between-individual variation in movement, potentially hindering the study of factors controlling movement. Terminology was found to be inconsistent among taxa and subdisciplines. The gaps identified in coverage of movement studies highlight research areas that should be addressed to fully understand the ecology of movement.


Assuntos
Migração Animal , Ecologia/tendências , Movimento , Animais
18.
Proc Natl Acad Sci U S A ; 105(49): 19052-9, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19060196

RESUMO

Movement of individual organisms is fundamental to life, quilting our planet in a rich tapestry of phenomena with diverse implications for ecosystems and humans. Movement research is both plentiful and insightful, and recent methodological advances facilitate obtaining a detailed view of individual movement. Yet, we lack a general unifying paradigm, derived from first principles, which can place movement studies within a common context and advance the development of a mature scientific discipline. This introductory article to the Movement Ecology Special Feature proposes a paradigm that integrates conceptual, theoretical, methodological, and empirical frameworks for studying movement of all organisms, from microbes to trees to elephants. We introduce a conceptual framework depicting the interplay among four basic mechanistic components of organismal movement: the internal state (why move?), motion (how to move?), and navigation (when and where to move?) capacities of the individual and the external factors affecting movement. We demonstrate how the proposed framework aids the study of various taxa and movement types; promotes the formulation of hypotheses about movement; and complements existing biomechanical, cognitive, random, and optimality paradigms of movement. The proposed framework integrates eclectic research on movement into a structured paradigm and aims at providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes. "Now we must consider in general the common reason for moving with any movement whatever." (Aristotle, De Motu Animalium, 4th century B.C.).


Assuntos
Migração Animal , Ecologia/métodos , Modelos Biológicos , Movimento , Animais , Humanos , Dinâmica Populacional
19.
PeerJ ; 9: e10447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575120

RESUMO

Chemical communication is important for many species of mammals. Male brown bears, Ursus arctos, mark trees with a secretion from glands located on their back. The recent discovery of pedal glands and pedal-marking at a site used for tree-rubbing led us to hypothesize that both types of marking form part of a more complex communication system. We describe the patterns of chemical communication used by different age and sex classes, including differences in the roles of these classes as information providers or receivers over four years at a long-term marking site. Using video recordings from a camera trap, we registered a total of 285 bear-visits and 419 behavioral events associated with chemical communication. Bears visited the site more frequently during the mating season, during which communication behaviors were more frequent. A typical visit by male bears consisted of sniffing the depressions where animals pedal mark, performing pedal-marking, sniffing the tree, and, finally, rubbing against the trunk of the tree. Adult males performed most pedal- and tree-marking (95% and 66% of the cases, respectively). Males pedal-marked and tree-rubbed in 81% and 48% of their visits and sniffed the pedal marks and the tree in 23% and 59% of visits, respectively. Adult females never pedal marked, and juveniles did so at very low frequencies. Females rubbed against the tree in just 9% of their visits; they sniffed the tree and the pedal marks in 51% and 21% of their visits, respectively. All sex and age classes performed pedal- and tree-sniffing. There were significant associations between behaviors indicating that different behaviors tended to occur during the same visit and were more likely if another individual had recently visited. These associations leading to repeated marking of the site can promote the establishment of long-term marking sites. Marking sites defined by trees and the trails leading to them seem to act as communication hubs that brown bears use to share and obtain important information at population level.

20.
J Anim Ecol ; 79(3): 620-32, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20102419

RESUMO

1. Natal dispersal has the potential to affect most ecological and evolutionary processes. However, despite its importance, this complex ecological process still represents a significant gap in our understanding of animal ecology due to both the lack of empirical data and the intrinsic complexity of dispersal dynamics. 2. By studying natal dispersal of 74 radiotagged juvenile eagle owls Bubo bubo (Linnaeus), in both the wandering and the settlement phases, we empirically addressed the complex interactions by which individual phenotypic traits and external cues jointly shape individual heterogeneity through the different phases of dispersal, both at nightly and weekly temporal scales. 3. Owls in poorer physical conditions travelled shorter total distances during the wandering phase, describing straighter paths and moving slower, especially when crossing heterogeneous habitats. In general, the owls in worse condition started dispersal later and took longer times to find further settlement areas. Net distances were also sex biased, with females settling at further distances. Dispersing individuals did not seem to explore wandering and settlement areas by using a search image of their natal surroundings. Eagle owls showed a heterogeneous pattern of patch occupancy, where few patches were highly visited by different owls whereas the majority were visited by just one individual. During dispersal, the routes followed by owls were an intermediate solution between optimized and randomized ones. Finally, dispersal direction had a marked directionality, largely influenced by dominant winds. These results suggest an asymmetric and anisotropic dispersal pattern, where not only the number of patches but also their functions can affect population viability. 4. The combination of the information coming from the relationships among a large set of factors acting and integrating at different spatial and temporal scales, under the perspective of heterogeneous life histories, are a fruitful ground for future understanding of natal dispersal.


Assuntos
Estrigiformes/fisiologia , Animais , Demografia , Ecossistema , Meio Ambiente , Feminino , Masculino , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA