Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Microbiology (Reading) ; 164(7): 982-991, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29799386

RESUMO

Dihydrofolate reductase (DHFR) and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/IMP cyclohydrolase (PurH) play key roles in maintaining folate pools in cells, and are targets of antimicrobial and anticancer drugs. While the activities of bacterial DHFR and PurH on their classical substrates (DHF and 10-CHO-THF, respectively) are known, their activities and kinetic properties of utilisation of 10-CHO-DHF are unknown. We have determined the kinetic properties (kcat/Km) of conversion of 10-CHO-DHF to 10-CHO-THF by DHFR, and to DHF by PurH. We show that DHFR utilises 10-CHO-DHF about one third as efficiently as it utilises DHF. The 10-CHO-DHF is also utilised (as a formyl group donor) by PurH albeit slightly less efficiently than 10-CHO-THF. The utilisation of 10-CHO-DHF by DHFR is ~50 fold more efficient than its utilisation by PurH. A folate deficient Escherichia coli (∆pabA) grows well when supplemented with adenine, glycine, thymine and methionine, the metabolites that arise from the one-carbon metabolic pathway. Notably, when the ∆pabA strain harboured a folate transporter, it grew in the presence of 10-CHO-DHF alone, suggesting that it (10-CHO-DHF) can enter one-carbon metabolic pathway to provide the required metabolites. Thus, our studies reveal that both DHFR and PurH could utilise 10-CHO-DHF for folate homeostasis in E. coli.


Assuntos
Escherichia coli/metabolismo , Ácido Fólico/análogos & derivados , Nucleotídeo Desaminases/metabolismo , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Ácido 4-Aminobenzoico , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/genética , Homeostase , Cinética , Redes e Vias Metabólicas , Nucleotídeo Desaminases/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Tetra-Hidrofolato Desidrogenase/genética
2.
J Bacteriol ; 197(4): 717-26, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25448816

RESUMO

In cells, N(10)-formyltetrahydrofolate (N(10)-fTHF) is required for formylation of eubacterial/organellar initiator tRNA and purine nucleotide biosynthesis. Biosynthesis of N(10)-fTHF is catalyzed by 5,10-methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) and/or 10-formyltetrahydrofolate synthetase (Fhs). All eubacteria possess FolD, but some possess both FolD and Fhs. However, the reasons for possessing Fhs in addition to FolD have remained unclear. We used Escherichia coli, which naturally lacks fhs, as our model. We show that in E. coli, the essential function of folD could be replaced by Clostridium perfringens fhs when it was provided on a medium-copy-number plasmid or integrated as a single-copy gene in the chromosome. The fhs-supported folD deletion (ΔfolD) strains grow well in a complex medium. However, these strains require purines and glycine as supplements for growth in M9 minimal medium. The in vivo levels of N(10)-fTHF in the ΔfolD strain (supported by plasmid-borne fhs) were limiting despite the high capacity of the available Fhs to synthesize N(10)-fTHF in vitro. Auxotrophy for purines could be alleviated by supplementing formate to the medium, and that for glycine was alleviated by engineering THF import into the cells. The ΔfolD strain (harboring fhs on the chromosome) showed a high NADP(+)-to-NADPH ratio and hypersensitivity to trimethoprim. The presence of fhs in E. coli was disadvantageous for its aerobic growth. However, under hypoxia, E. coli strains harboring fhs outcompeted those lacking it. The computational analysis revealed a predominant natural occurrence of fhs in anaerobic and facultative anaerobic bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Clostridium perfringens/enzimologia , Escherichia coli/metabolismo , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Redes e Vias Metabólicas , Viabilidade Microbiana , Oxigênio/metabolismo , Proteínas de Bactérias/genética , Carbono/metabolismo , Clonagem Molecular , Clostridium perfringens/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Formiato-Tetra-Hidrofolato Ligase/genética , Formiltetra-Hidrofolatos/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Oxigênio/análise
3.
Protein Sci ; 26(2): 227-241, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28127816

RESUMO

The E. coli single strand DNA binding protein (SSB) is essential to viability where it functions in two seemingly disparate roles: it binds to single stranded DNA (ssDNA) and to target proteins that comprise the SSB interactome. The link between these roles resides in a previously under-appreciated region of the protein known as the intrinsically disordered linker (IDL). We present a model wherein the IDL is responsible for mediating protein-protein interactions critical to each role. When interactions occur between SSB tetramers, cooperative binding to ssDNA results. When binding occurs between SSB and an interactome partner, storage or loading of that protein onto the DNA takes place. The properties of the IDL that facilitate these interactions include the presence of repeats, a putative polyproline type II helix and, PXXP motifs that may facilitate direct binding to the OB-fold in a manner similar to that observed for SH3 domain binding of PXXP ligands in eukaryotic systems.


Assuntos
DNA Bacteriano/química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Modelos Moleculares , Multimerização Proteica , Motivos de Aminoácidos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Quaternária de Proteína , Domínios de Homologia de src
4.
FEMS Microbiol Lett ; 362(14)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26100103

RESUMO

In bacteria, alternate mechanisms are known to synthesize N(10)-formyltetrahydrofolate (N(10)-formyl-THF) and formyl glycinamide ribotide (fGAR), which are important in purine biosynthesis. In one of the mechanisms, a direct transfer of one carbon unit from formate allows Fhs to convert tetrahydrofolate to N(10)-formyl-THF, and PurT to convert glycinamide ribotide (GAR) to fGAR. Our bioinformatics analysis of fhs and purT genes (encoding Fhs and PurT) showed that in a majority of bacteria (∼94%), their presence was mutually exclusive. A large number of organisms possessing fhs lacked purT and vice versa. The phenomenon is so penetrating that even within a genus (Bacillus) if a species possessed fhs it lacked purT and vice versa. To investigate physiological importance of this phenomenon, we used Escherichia coli, which naturally lacks fhs (and possesses purT) as model. We generated strains, which possessed fhs and purT genes in singles or together. Deletion of purT from E. coli in the presence or absence of fhs did not confer a detectable growth disadvantage in pure cultures. However, growth competition assays revealed that the strains possessing either of the single genes outcompeted those possessing both the genes suggesting that mutual exclusion of purT and fhs in organisms confers fitness advantage in mixed cultures.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Formiato-Tetra-Hidrofolato Ligase/genética , Aptidão Genética , Hidroximetil e Formil Transferases/genética , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , Deleção de Genes , Glicina/análogos & derivados , Glicina/metabolismo , Ribonucleotídeos/metabolismo
5.
PLoS One ; 9(4): e94669, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24722671

RESUMO

Single-stranded DNA binding proteins (SSBs) are vital in all organisms. SSBs of Escherichia coli (EcoSSB) and Mycobacterium tuberculosis (MtuSSB) are homotetrameric. The N-terminal domains (NTD) of these SSBs (responsible for their tetramerization and DNA binding) are structurally well defined. However, their C-terminal domains (CTD) possess undefined structures. EcoSSB NTD consists of ß1-ß1'-ß2-ß3-α-ß4-ß451-ß452-ß5 secondary structure elements. MtuSSB NTD includes an additional ß-strand (ß6) forming a novel hook-like structure. Recently, we observed that MtuSSB complemented an E. coli Δssb strain. However, a chimeric SSB (mß4-ß5), wherein only the terminal part of NTD (ß4-ß5 region possessing L45 loop) of EcoSSB was substituted with that from MtuSSB, failed to function in E. coli in spite of its normal DNA binding and oligomerization properties. Here, we designed new chimeras by transplanting selected regions of MtuSSB into EcoSSB to understand the functional significance of the various secondary structure elements within SSB. All chimeric SSBs formed homotetramers and showed normal DNA binding. The mß4-ß6 construct obtained by substitution of the region downstream of ß5 in mß4-ß5 SSB with the corresponding region (ß6) of MtuSSB complemented the E. coli strain indicating a functional interaction between the L45 loop and the ß6 strand of MtuSSB.


Assuntos
Proteínas de Bactérias/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/metabolismo , Ligação Proteica
6.
Mech Ageing Dev ; 134(10): 516-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24012630

RESUMO

Mycobacteria are an important group of pathogenic bacteria. We generated a series of DNA repair deficient strains of Mycobacterium smegmatis, a model organism, to understand the importance of various DNA repair proteins (UvrB, Ung, UdgB, MutY and Fpg) in survival of the pathogenic strains. Here, we compared tolerance of the M. smegmatis strains to genotoxic stress (ROS and RNI) under aerobic, hypoxic and recovery conditions of growth by monitoring their survival. We show an increased susceptibility of mycobacteria to genotoxic stress under hypoxia. UvrB deficiency led to high susceptibility of M. smegmatis to the DNA damaging agents. Ung was second in importance in strains with single deficiencies. Interestingly, we observed that while deficiency of UdgB had only a minor impact on the strain's susceptibility, its combination with Ung deficiency resulted in severe consequences on the strain's survival under genotoxic stress suggesting a strong interdependence of different DNA repair pathways in safeguarding genomic integrity. Our observations reinforce the possibility of targeting DNA repair processes in mycobacteria for therapeutic intervention during active growth and latency phase of the pathogen. High susceptibility of the UvrB, or the Ung/UdgB deficient strains to genotoxic stress may be exploited in generation of attenuated strains of mycobacteria.


Assuntos
Dano ao DNA , Reparo do DNA/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Espécies Reativas de Nitrogênio/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Aerobiose/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Viabilidade Microbiana/genética , Mycobacterium smegmatis/genética , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
7.
PLoS One ; 6(12): e27216, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174737

RESUMO

Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (mß1, mß1'ß2, mß1-ß5, mß1-ß6 and mß4-ß5) by transplanting ß1, ß1'ß2, ß1-ß5, ß1-ß6 and ß4-ß5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, mß1'ß2(ESWR) SSB was generated by mutating the MtuSSB specific 'PRIY' sequence in the ß2 strand of mß1'ß2 SSB to EcoSSB specific 'ESWR' sequence. Biochemical characterization revealed that except for mß1 SSB, all chimeras and a control construct lacking the C-terminal domain (ΔC SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, mß1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that mß1-ß6, MtuSSB, mß1'ß2 and mß1-ß5 SSBs complemented E. coli Δssb in a dose dependent manner. Complementation by the mß1-ß5 SSB was poor. In contrast, mß1'ß2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Bactérias/química , Quimotripsina/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Fluorescência , Teste de Complementação Genética , Humanos , Cinética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA