Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropharmacology ; 135: 113-125, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29499275

RESUMO

CNS actions of the chemokine CCL2 are thought to play a role in a variety of conditions that can have detrimental consequences to CNS function, including alcohol use disorders. We used transgenic mice that express elevated levels of CCL2 in the CNS (CCL2-tg) and their non-transgenic (non-tg) littermate control mice to investigate long-term consequences of CCL2/alcohol/withdrawal interactions on hippocampal synaptic function, including excitatory synaptic transmission, somatic excitability, and synaptic plasticity. Two alcohol exposure paradigms were tested, a two-bottle choice alcohol (ethanol) drinking protocol (2BC drinking) and a chronic intermittent alcohol (ethanol) (CIE/2BC) protocol. Electrophysiological measurements of hippocampal function were made ex vivo, starting ∼0.6 months after termination of alcohol exposure. Both alcohol exposure/withdrawal paradigms resulted in CCL2-dependent interactions that altered the effects of alcohol on synaptic function. The synaptic alterations differed for the two alcohol exposure paradigms. The 2BC drinking/withdrawal treatment had no apparent long-term consequences on synaptic responses and long-term potentiation (LTP) in hippocampal slices from non-tg mice, whereas synaptic transmission was reduced but LTP was enhanced in hippocampal slices from CCL2-tg mice. In contrast, the CIE/2BC/withdrawal treatment enhanced synaptic transmission but reduced LTP in the non-tg hippocampus, whereas there were no apparent long-term consequences to synaptic transmission and LTP in hippocampus from CCL2-tg mice, although somatic excitability was enhanced. These results support the idea that alcohol-induced CCL2 production can modulate the effects of alcohol exposure/withdrawal on synaptic function and indicate that CCL2/alcohol interactions can vary depending on the alcohol exposure/withdrawal protocol used.


Assuntos
Alcoolismo/metabolismo , Quimiocina CCL2/biossíntese , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Síndrome de Abstinência a Substâncias/metabolismo , Transmissão Sináptica/fisiologia , Animais , Quimiocina CCL2/genética , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Transgênicos , Fatores de Tempo
2.
Neuropharmacology ; 103: 27-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26707655

RESUMO

A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including persistent changes in CNS function that contribute to cognitive dysfunction and the development of alcohol dependence.


Assuntos
Astrócitos/metabolismo , Etanol/administração & dosagem , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Interleucina-6/metabolismo , Células Piramidais/efeitos dos fármacos , Animais , Ondas Encefálicas/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Estimulação Elétrica , Hipocampo/fisiologia , Camundongos , Camundongos Transgênicos , Neurorretroalimentação , Plasticidade Neuronal/efeitos dos fármacos , Células Piramidais/fisiologia , Transdução de Sinais/efeitos dos fármacos
3.
Neuropharmacology ; 67: 115-25, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23164616

RESUMO

It has been shown that ethanol exposure can activate astrocytes and microglia resulting in the production of neuroimmune factors, including the chemokine CCL2. The role of these neuroimmune factors in the effects of ethanol on the central nervous system has yet to be elucidated. To address this question, we investigated the effects of ethanol on synaptic transmission and plasticity in the hippocampus from mice that express elevated levels of CCL2 in the brain and their non-transgenic littermate controls. The brains of the transgenic mice simulate one aspect of the alcoholic brain, chronically increased levels of CCL2. We used extracellular field potential recordings in acutely isolated hippocampal slices to identify neuroadaptive changes produced by elevated levels of CCL2 and how these neuroadaptive changes affect the actions of acute ethanol. Results showed that synaptic transmission and the effects of ethanol on synaptic transmission were similar in the CCL2-transgenic and non-transgenic hippocampus. However, long-term potentiation (LTP), a cellular mechanism thought to underlie learning and memory, in the CCL2-transgenic hippocampus was resistant to the ethanol-induced depression of LTP observed in the non-transgenic hippocampus. Consistent with these results, ethanol pretreatment significantly impaired cued and contextual fear conditioning in non-transgenic mice, but had no effect in CCL2-transgenic mice. These data show that chronically elevated levels of CCL2 in the hippocampus produce neuroadaptive changes that block the depressing effects of ethanol on hippocampal synaptic plasticity and support the hypothesis that CCL2 may provide a neuroprotective effect against the devastating actions of ethanol on hippocampal function.


Assuntos
Astrócitos/metabolismo , Quimiocina CCL2/biossíntese , Etanol/administração & dosagem , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA