Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Neurochem Res ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120794

RESUMO

Autism spectrum disorder (ASD) is known as a group of neurodevelopmental conditions including stereotyped and repetitive behaviors, besides social and sensorimotor deficits. Anatomical and functional evidence indicates atypical maturation of the striatum. Astrocytes regulate the maturation and plasticity of synaptic circuits, and impaired calcium signaling is associated with repetitive behaviors and atypical social interaction. Spontaneous calcium transients (SCT) recorded in the striatal astrocytes of the rat were investigated in the preclinical model of ASD by prenatal exposure to valproic acid (VPA). Our results showed sensorimotor delay, augmented glial fibrillary acidic protein -a typical intermediate filament protein expressed by astrocytes- and diminished expression of GABAA-ρ3 through development, and increased frequency of SCT with a reduced latency that resulted in a diminished amplitude in the VPA model. The convulsant picrotoxin, a GABAA (γ-aminobutyric acid type A) receptor antagonist, reduced the frequency of SCT in both experimental groups but rescued this parameter to control levels in the preclinical ASD model. The amplitude and latency of SCT were decreased by picrotoxin in both experimental groups. Nipecotic acid, a GABA uptake inhibitor, reduced the mean amplitude only for the control group. Nevertheless, nipecotic acid increased the frequency but diminished the latency in both experimental groups. Thus, we conclude that striatal astrocytes exhibit SCT modulated by GABAA-mediated signaling, and prenatal exposure to VPA disturbs this tuning.

2.
Neurochem Res ; 47(3): 781-794, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34978003

RESUMO

Environmental enrichment induces behavioral and structural modifications in rodents and influences the capability of mice to cope with stress. However, little is understood about hippocampal neurogenesis and the appearance of social/agonistic (aggressive) behavior upon activation of different neuronal circuits in FVB/N mice. Thus, in this study we hypothesized that environmental enrichment differentially regulates neurogenesis, neural circuit activation and social/agonistic behavior in male and female FVB/N mice. We explored the (1) neurogenic process as an indicative of neuroplasticity, (2) neuronal activation in the limbic system, and (3) social behavior using the resident-intruder test. On postnatal day 23 (PD23), mice were assigned to one of two groups: Standard Housing or Environmental Enrichment. At PD53, rodents underwent the resident-intruder test to evaluate social behaviors. Results revealed that environmental enrichment increased neurogenesis and social interaction in females. In males, environmental enrichment increased neurogenesis and agonistic behavior. Enriched male mice expressed higher levels of agonistic-related behavior than female mice housed under the same conditions. Neural circuit analysis showed lower activation in the amygdala of enriched males and higher activation in enriched females than their respective controls. Enriched females also showed higher activation in the frontal cortex without differences in male groups. Moreover, the insular cortex was less activated in females than in males. Thus, our results indicate that environmental enrichment has different effects on neuroplasticity and social/agonistic behavior in FVB/N mice, suggesting the relevance of sexual dimorphism in response to environmental stimuli.


Assuntos
Comportamento Agonístico , Interação Social , Agressão/fisiologia , Comportamento Agonístico/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Comportamento Social
3.
Proc Natl Acad Sci U S A ; 111(49): 17522-7, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422464

RESUMO

GABA-A receptors mediating synaptic or extrasynaptic transmission are molecularly and functionally distinct, and glial cells are known to express a plethora of GABA-A subunits. Here we demonstrate that GFAP(+) cells of the granular layer of cerebellum express GABAρ subunits during early postnatal development, thereby conferring peculiar pharmacologic characteristics to GABA responses. Electron microscopy revealed the presence of GABAρ in the plasma membrane of GFAP(+) cells. In contrast, expression in the adult was restricted to Purkinje neurons and a subset of ependymal cells. Electrophysiological studies in vitro revealed that astrocytes express functional receptors with an EC50 of 52.2 ± 11.8 µM for GABA. The evoked currents were inhibited by bicuculline (100 µM) and TPMPA (IC50, 5.9 ± 0.6 µM), indicating the presence of a GABAρ component. Coimmunoprecipitation demonstrated protein-protein interactions between GABAρ1 and GABAα1, and double immunofluorescence showed that these subunits colocalize in the plasma membrane. Three populations of GABA-A receptors in astrocytes were identified: classic GABA-A, bicuculline-insensitive GABAρ, and GABA-A-GABAρ hybrids. Clusters of GABA-A receptors were distributed in the perinuclear space and along the processes of GFAP(+) cells. Time-lapse microscopy showed GABAρ2-GFP accumulation in clusters located in the soma and along the processes. The clusters were relatively immobile, with mean displacement of 9.4 ± 0.9 µm and a net distance traveled of 1-2 µm, owing mainly to directional movement or simple diffusion. Modulation of GABAρ dynamics may be a novel mechanism of extrasynaptic transmission regulating GABAergic control of GFAP(+) cells during early postnatal development.


Assuntos
Bicuculina/química , Membrana Celular/metabolismo , Cerebelo/metabolismo , Proteína Glial Fibrilar Ácida/química , Neurotransmissores/metabolismo , Receptores de GABA-A/fisiologia , Animais , Astrócitos/citologia , Linhagem da Célula , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Neuroglia/metabolismo , Neurônios/metabolismo , Ácidos Fosfínicos/química , Mapeamento de Interação de Proteínas , Transporte Proteico , Células de Purkinje/metabolismo , Piridinas/química , Fatores de Tempo
4.
Neural Plast ; 2016: 2426413, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27579183

RESUMO

Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (-23%) and dentate gyrus (-48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression.


Assuntos
Anorexia/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Animais , Astrócitos/metabolismo , Contagem de Células/métodos , Feminino , Nestina/metabolismo , Ratos Wistar , Vimentina/metabolismo
5.
Neural Plast ; 2015: 474917, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090235

RESUMO

Anorexia nervosa is an eating disorder associated with severe weight loss as a consequence of voluntary food intake avoidance. Animal models such as dehydration-induced anorexia (DIA) mimic core features of the disorder, including voluntary reduction in food intake, which compromises the supply of energy to the brain. Glial cells, the major population of nerve cells in the central nervous system, play a crucial role in supplying energy to the neurons. The corpus callosum (CC) is the largest white matter tract in mammals, and more than 99% of the cell somata correspond to glial cells in rodents. Whether glial cell density is altered in anorexia is unknown. Thus, the aim of this study was to estimate glial cell density in the three main regions of the CC (genu, body, and splenium) in a murine model of DIA. The astrocyte density was significantly reduced (~34%) for the DIA group in the body of the CC, whereas in the genu and the splenium no significant changes were observed. DIA and forced food restriction (FFR) also reduced the ratio of astrocytes to glial cells by 57.5% and 22%, respectively, in the body of CC. Thus, we conclude that DIA reduces astrocyte density only in the body of the rat CC.


Assuntos
Anorexia Nervosa/patologia , Astrócitos/patologia , Corpo Caloso/patologia , Animais , Contagem de Células , Desidratação/patologia , Modelos Animais de Doenças , Feminino , Ratos , Ratos Wistar
6.
Amino Acids ; 46(11): 2587-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25119985

RESUMO

Taurine activates and modulates GABA receptors in vivo as well as those expressed in heterologous systems. This study aimed to determine whether the structural analogs of taurine: homotaurine and hypotaurine, have the ability to activate GABA-A receptors that include GABAρ subunits. The expression of GABA-A receptors containing GABAρ has been reported in the STC-1 cells and astrocytes. In both cell types, taurine, homo-, and hypotaurine gated with low efficiency a picrotoxin-sensitive GABA-A receptor. The known bimodal modulatory effect of taurine on GABAρ receptors was not observed; however, differences between the activation and deactivation rates were detected when they were perfused together with GABA. In silico docking simulations suggested that taurine, hypo-, and homotaurine do not form a cation-π interaction such as that generated by GABA in the agonist-binding site of GABAρ. This observation complements the electrophysiological data suggesting that taurine and its analogs act as partial agonists of GABA-A receptors. All the observations above suggest that the structural analogs of taurine are partial agonists of GABA-A receptors that occupy the agonist-binding site, but their structures do not allow the proper interaction with the receptor to fully gate its Cl(-) channel.


Assuntos
Astrócitos/metabolismo , Receptores de GABA-A/química , Taurina/química , Animais , Astrócitos/citologia , Sítios de Ligação , Caenorhabditis elegans , Linhagem Celular , Simulação por Computador , Eletrofisiologia , Humanos , Cinética , Ligantes , Camundongos , Técnicas de Patch-Clamp , Perfusão , Picrotoxina/química , Ligação Proteica , Conformação Proteica , Taurina/análogos & derivados
7.
J Neurosci Res ; 91(4): 527-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23359488

RESUMO

The ependymal glial cells (EGCs) from the periventricular zone of the cerebellum were studied to determine their distribution and the functional properties of their γ-aminobutyric acid type A (GABA(A) ) receptors. EGCs were identified by the presence of ciliated structures on their ventricular surface and their expression of glial fibrillary acidic protein (GFAP). Interestingly, diverse cell types, including neurons, astrocytes, and other types of glia, were identified in the subventricular zone by their current profiles. Electron microscopy showed ciliated cells and myelinated axons in this zone, but we found no collateral connections to suggest the presence of functional synapses. GABA-mediated currents were recorded from EGCs in cerebellar slices from postnatal days 13 to 35 (PN13-PN35). These currents were blocked by TPMPA (a highly specific GABA(A) ρ subunit antagonist) and bicuculline (a selective antagonist for classic GABA(A) receptors). Pentobarbital failed to modulate GABA(A)-mediated currents despite the expression of GABAα1 and GABAγ2 subunits. In situ hybridization, RT-PCR, and immunofluorescence studies confirmed GABAρ1 expression in EGCs of the cerebellum. We conclude that cerebellar EGCs express GABAρ1, which is functionally involved in GABA(A) receptor-mediated responses that are unique among glial cells of the brain.


Assuntos
Cerebelo/metabolismo , Epêndima/metabolismo , Neuroglia/metabolismo , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Animais , Bicuculina/farmacologia , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Epêndima/citologia , Epêndima/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
8.
Biol Res ; 46(1): 27-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23760411

RESUMO

Axons and glial cells are the main components of white matter. The corpus callosum (CC) is the largest white matter tract in mammals; in rodents, 99% of the cells correspond to glia after postnatal day 5 (P5). The area of the CC varies through life and regional differences related to the number of axons have been previously described. Whether glial cell density varies accordingly is unknown; thus the aim of this study was to estimate glial cell density for the genu, body and splenium -the three main regions of CC-, of P6 and P30 rats. Here we report that the density of CC glial cells reduced by ~10% from P6 to P30. Even so, the density of astrocytes showed a slight increase (+6%), probably due to differentiation of glioblasts. Interestingly, glial cell density decreased for the genu (-21%) and the body (-13%), while for the splenium a minor increase (+5%) was observed. The astrocyte/glia ratio increased (from P6 to P30) for the genu (+27%), body (+17%) and splenium (+4%). Together, our results showed regional differences in glial cell density of the CC. Whether this pattern is modified in some neuropathologies remains to be explored.


Assuntos
Corpo Caloso/citologia , Proteína Glial Fibrilar Ácida/fisiologia , Neuroglia/citologia , Fatores Etários , Animais , Astrócitos/citologia , Contagem de Células , Diferenciação Celular/fisiologia , Corpo Caloso/crescimento & desenvolvimento , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Morfogênese , Ratos
9.
Brain Res ; 1815: 148461, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37308047

RESUMO

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by persistent deficits in social communication and social interaction. Altered synaptogenesis and aberrant connectivity responsible for social behavior and communication have been reported in autism pathogenesis. Autism has a strong genetic and heritable component; however, environmental factors including toxins, pesticides, infection and in utero exposure to drugs such as VPA have also been implicated in ASD. Administration of VPA during pregnancy has been used as a rodent model to study pathophysiological mechanisms involved in ASD, and in this study, we used the mouse model of prenatal exposure to VPA to assess the effects on striatal and dorsal hippocampus function in adult mice. Alterations in repetitive behaviors and shift habits were observed in mice prenatally exposed to VPA. In particular, such mice presented a better performance in learned motor skills and cognitive deficits in Y-maze learning frequently associated with striatal and hippocampal function. These behavioral changes were associated with a decreased level of proteins involved in the formation and maintenance of excitatory synapses, such as Nlgn-1 and PSD-95. In conclusion, motor skill abilities, repetitive behaviors, and impaired flexibility to shift habits are associated with reduced striatal excitatory synaptic function in the adult mouse prenatally exposed to VPA.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Camundongos , Animais , Ácido Valproico/farmacologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Comportamento Social , Modelos Animais de Doenças , Comportamento Animal
10.
J Neurochem ; 122(5): 900-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22168837

RESUMO

GABAergic transmission in the neostriatum plays a central role in motor coordination, in which a plethora of GABA-A receptor subunits combine to modulate neural inhibition. GABAρ receptors were originally described in the mammalian retina. These receptors possess special electrophysiological and pharmacological properties, forming a characteristic class of ionotropic receptors. In previous studies, we suggested that GABAρ receptors are expressed in the neostriatum, and in this report we show that they are indeed present in all the calretinin-positive interneurons of the neostriatum. In addition, they are located in calbindin-positive interneurons and projection neurons that express the dopamine D(2) receptor. GABAρ receptors were also located in 30% of the glial fibrillary acidic protein-positive cells, and may therefore also contribute to gliotransmission. Quantitative reverse transcription-PCR suggested that the mRNAs of this receptor do not express as much as in the retina, and that GABAρ2 is more abundant than GABAρ1. Electrophysiological recordings in brain slices provided evidence of neurons expressing a cis-4-aminocrotonic acid-activated, 1,2,5,6-tetrahydropyridine-4-yl methylphosphinic acid-sensitive ionotropic GABA receptor, indicating the presence of functional GABAρ receptors in the neostriatum. Finally, electron-microscopy and immunogold located the receptors mainly in perisynaptic as well as in extrasynaptic sites. All these observations reinforce the importance of GABAρ receptors in the neostriatum and contribute to the diversity of inhibitory regulation in this area.


Assuntos
Proteína Glial Fibrilar Ácida/metabolismo , Neostriado/citologia , Neuroglia/metabolismo , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Animais , Calbindinas , Interações Medicamentosas , GABAérgicos/farmacologia , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neuroglia/ultraestrutura , Neurônios/classificação , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Receptores de GABA-A/genética , Proteína G de Ligação ao Cálcio S100/metabolismo , Ácido gama-Aminobutírico/farmacologia
11.
Front Cell Neurosci ; 16: 983577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003140

RESUMO

Anorexia is a loss of appetite or an inability to eat and is often associated with eating disorders. However, animal anorexia is physiologically regulated as a part of the life cycle; for instance, during hibernation, migration or incubation. Anorexia nervosa (AN), on the other hand, is a common eating disorder among adolescent females that experience an intense fear of gaining weight due to body image distortion that results in voluntary avoidance of food intake and, thus, severe weight loss. It has been shown that the neurobiology of feeding extends beyond the hypothalamus. The prefrontal cortex (PFC) is involved in food choice and body image perception, both relevant in AN. However, little is known about the neurobiology of AN, and the lack of effective treatments justifies the use of animal models. Glial cells, the dominant population of nerve cells in the central nervous system, are key in maintaining brain homeostasis. Accordingly, recent studies suggest that glial function may be compromised by anorexia. In this review, we summarize recent findings about anorexia and glial cells.

12.
Behav Brain Res ; 420: 113715, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-34906609

RESUMO

Anorexia nervosa (AN) is an eating disorder characterized by self-starvation and excessive weight loss with a notorious prevalence in young women. The neurobiology of AN is unknown but murine models, like dehydration induced anorexia (DIA), reproduce weight loss and avoidance of food despite its availability. Astrocytes are known to provide homeostatic support to neurons, but it is little explored if anorexia affects this function. In this study, we tested if DIA disrupts glutamate-glutamine homeostasis associated with astrocytes in the prefrontal cortex (PFC) of young female rats. Our results showed that anorexia reduced the redox state, as well as endogenous glutamate and glutamine. These effects correlated with a reduced expression of the glutamate transporters (GLT-1 and GLAST) and glutamine synthetase, all of them are preferentially expressed by astrocytes. Accordingly, the expression of GFAP was reduced. Anorexia reduced the astrocyte density, promoted a de-ramified morphology, and augmented the de-ramified/ramified astrocyte ratio in the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC), but not in the motor cortex (M2). The increase of a de-ramified phenotype correlated with increased expression of vimentin and nestin. Based on these results, we conclude that anorexia disrupts glutamate-glutamine homeostasis and the redox state associated with astrocyte dysfunction.


Assuntos
Anorexia/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Homeostase , Córtex Pré-Frontal/metabolismo , Animais , Feminino , Glutamato-Amônia Ligase/metabolismo , Nestina , Neurônios/metabolismo , Ratos
13.
Front Cell Dev Biol ; 9: 662191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889577

RESUMO

Oligodendrocytes (OLs) produce myelin to insulate axons. This accelerates action potential propagation, allowing nerve impulse information to synchronize within complex neuronal ensembles and promoting brain connectivity. Brain plasticity includes myelination, a process that starts early after birth and continues throughout life. Myelin repair, followed by injury or disease, requires new OLs differentiated from a population derived from oligodendrocyte precursor cells (OPCs) that continue to proliferate, migrate and differentiate to preserve and remodel myelin in the adult central nervous system. OPCs represent the largest proliferative neural cell population outside the adult neurogenic niches in the brain. OPCs receive synaptic inputs from glutamatergic and GABAergic neurons throughout neurodevelopment, a unique feature among glial cells. Neuron-glia communication through GABA signaling in OPCs has been shown to play a role in myelin plasticity and repair. In this review we will focus on the molecular and functional properties of GABA A receptors (GABA A Rs) expressed by OPCs and their potential role in remyelination.

14.
Front Cell Dev Biol ; 9: 727079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540842

RESUMO

Autism spectrum disorders (ASD) are pervasive neurodevelopmental conditions detected during childhood when delayed language onset and social deficits are observed. Children diagnosed with ASD frequently display sensorimotor deficits associated with the cerebellum, suggesting a dysfunction of synaptic circuits. Astroglia are part of the tripartite synapses and postmortem studies reported an increased expression of the glial fibrillary acidic protein (GFAP) in the cerebellum of ASD patients. Astroglia respond to neuronal activity with calcium transients that propagate to neighboring cells, resulting in a functional response known as a calcium wave. This form of intercellular signaling is implicated in proliferation, migration, and differentiation of neural precursors. Prenatal exposure to valproate (VPA) is a preclinical model of ASD in which premature migration and excess of apoptosis occur in the internal granular layer (IGL) of the cerebellum during the early postnatal period. In this study we tested calcium wave propagation in the IGL of mice prenatally exposed to VPA. Sensorimotor deficits were observed and IGL depolarization evoked a calcium wave with astrocyte recruitment. The calcium wave propagation, initial cell recruitment, and mean amplitude of the calcium transients increased significantly in VPA-exposed mice compared to the control group. Astrocyte recruitment was significantly increased in the VPA model, but the mean amplitude of the calcium transients was unchanged. Western blot and histological studies revealed an increased expression of GFAP, higher astroglial density and augmented morphological complexity. We conclude that the functional signature of the IGL is remarkably augmented in the preclinical model of autism.

15.
Neuroscience ; 433: 132-143, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32171821

RESUMO

The cerebellum is involved in the coordination of movement. Its cellular composition is dominated by GABAergic neuronal types, and glial cells are known to express functional receptors. GABAergic signaling regulates cell proliferation, differentiation, and migration during neurodevelopment. However, little is known about the functional expression of GABA receptors in the cerebellar white matter (WM). Thus, the aim of this study was to test whether glial cells express functional GABA receptors during postnatal development (P7-P9) of cerebellar WM. Immunofluorescence showed that half of the astrocytes express GAD67, suggesting that glial cells synthesize GABA. Calcium imaging in cerebellar slices revealed that GABA and the GABAA agonist muscimol evoked calcium transients in sulforhodamine B negative cells, whereas the GABAB agonist baclofen failed to evoke responses in cerebellar WM. Whole-cell patch-clamp recordings of GFAP+ cells showed dye coupling and a passive current-voltage relation typical of astrocytes. Surprisingly, these cells did not respond to muscimol. Two additional populations were identified as GFAP- cells. The first population showed dye coupling, slow decaying inward and outward currents with no voltage dependence, and did not respond to GABAA agonists. The second population showed an outward-rectifying current-voltage relationship and responded to muscimol, but dye coupling was absent. These cells received synaptic input and were NG2+, but evoked calcium waves failed to modulate the frequency of spontaneous postsynaptic currents (sPSCs) or signaling into NG2 glia. We conclude that GABAA receptor-mediated signaling is selective for NG2 glia in the WM of the cerebellum.


Assuntos
Receptores de GABA-A , Substância Branca , Muscimol/farmacologia , Neuroglia , Ácido gama-Aminobutírico
16.
Behav Brain Res ; 392: 112606, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32387351

RESUMO

Dehydration-Induced Anorexia (DIA) is a murine model that reproduces weight loss and avoidance of food, despite its availability. The prefrontal cortex (PFC) integrates sensory inputs and updates associative learning to promote (hunger) or inhibit (satiety) food-seeking behavior. In this study we tested if anorexia induces a pro-inflammatory environment associated with microglia in the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC), specific subregions of the PFC involved in appetite. Our results showed that anorexia increased microglial density, promoted a de-ramified morphology and augmented the de-ramified/ramified ratio in the mPFC and OFC but not in the motor cortex. Anorexia also increased the expression of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1ß. This pro-inflammatory environment associated with microglia activation correlates with neuronal damage as revealed by Fluoro Jade C (FJC) and NeuN immunolabeling. We conclude that anorexia triggers a pro-inflammatory environment associated with microglia that correlates with neurodegeneration in the mPFC and OFC.


Assuntos
Anorexia/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Córtex Pré-Frontal/metabolismo , Animais , Anorexia/fisiopatologia , Encéfalo/metabolismo , Citocinas/metabolismo , Feminino , Inflamação/metabolismo , Microglia/metabolismo , Microglia/fisiologia , Doenças Neurodegenerativas/etiologia , Neurônios/metabolismo , Ratos , Ratos Wistar
17.
Behav Brain Res ; 363: 118-125, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30690107

RESUMO

Anorexia by osmotic dehydration is an adaptive response to hypernatremia and hyperosmolaemia induced by ingestion of a hypertonic solution. Dehydration-induced anorexia (DIA) reproduces weight loss and avoidance of food, despite its availability. By using this model, we previously showed increased reactive astrocyte density in the rat dorsal hippocampus, suggesting a pro-inflammatory environment where microglia may play an important role. However, whether such anorexic condition increases a pro-inflammatory response is unknown. The aim of this study was to test if DIA increases microglial density in the dorsal hippocampus, as well as the expression of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1ß) in the hippocampus of young female rats. Our results showed that DIA significantly increased microglial density in CA2-CA3 and dentate gyrus (DG) but not in CA1. However, forced food restriction (FFR) only increased microglial density in the DG. Accordingly, the activated/resting microglia ratio was significantly increased in CA2-CA3 and DG, in DIA and FFR groups. Finally, western blot analysis showed increased expression of IBA1, TNF-α, IL-6 and IL-1ß in the hippocampus of both experimental groups. We conclude that anorexia triggers increased reactive microglial density and expression of TNF-α, IL-6 and IL-1ß; this environment may result in hippocampal neuroinflammation.


Assuntos
Anorexia/fisiopatologia , Hipocampo/metabolismo , Microglia/patologia , Animais , Anorexia/metabolismo , Astrócitos/metabolismo , Citocinas/metabolismo , Citocinas/fisiologia , Giro Denteado/metabolismo , Feminino , Hipocampo/fisiologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , Ratos , Ratos Wistar , Lobo Temporal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Cell Calcium ; 43(6): 591-601, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18054077

RESUMO

Ca(2+) signaling is the astrocyte form of excitability and the endoplasmic reticulum (ER) plays an important role as an intracellular Ca(2+) store. Since the subcellular distribution of the ER influences Ca(2+) signaling, we compared the arrangement of ER in astrocytes of hippocampus tissue and astrocytes in cell culture by electron microscopy. While the ER was usually located in close apposition to the plasma membrane in astrocytes in situ, the ER in cultured astrocytes was close to the nuclear membrane. Activation of metabotropic receptors linked to release of Ca(2+) from ER stores triggered distinct responses in cultured and in situ astrocytes. In culture, Ca(2+) signals were commonly first recorded close to the nucleus and with a delay at peripheral regions of the cells. Store-operated Ca(2+) entry (SOC) as a route to refill the Ca(2+) stores could be easily identified in cultured astrocytes as the Zn(2+)-sensitive component of the Ca(2+) signal. In contrast, such a Zn(2+)-sensitive component was not recorded in astrocytes from hippocampal slices despite of evidence for SOC. Our data indicate that both, astrocytes in situ and in vitro express SOC necessary to refill stores, but that a SOC-related signal is not recorded in the cytoplasm of astrocytes in situ since the stores are close to the plasma membrane and the refill does not affect cytoplasmic Ca(2+) levels.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Compostos de Anilina , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Corantes Fluorescentes , Proteínas de Fluorescência Verde , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Imuno-Histoquímica , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Técnicas de Cultura de Órgãos , Coloração e Rotulagem , Xantenos , Zinco/metabolismo , Zinco/farmacologia
20.
Neuropharmacology ; 113(Pt A): 407-415, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27793773

RESUMO

The neostriatum plays a central role in motor coordination where nerve cells operate neuronal inhibition through GABAergic transmission. The neostriatum expresses a wide range of GABA-A subunits, including GABAρ1 and ρ2 which are restricted to a fraction of GABAergic interneurons and astrocytes. Spontaneous postsynaptic currents (sPSCs) evoked by 4-aminopyridine (4-AP) were recorded from neurones of the dorsal neostriatum, and their frequency was reduced > 50% by the selective GABAρ antagonist (1,2,5,6-Tetrahydropyridine-4-yl) methylphosphinic acid (TPMPA). Additionally, we recorded GABA evoked currents from astrocytes in vitro and in situ. Astrocytes in vitro showed modulation by pentobarbital and desensitization upon consecutive applications of GABA. However, modulation by pentobarbital was absent and no significant desensitization was detected from astrocytes in situ. Moreover, TPMPA-sensitive GABA-currents that were insensitive to bicuculline were also recorded from astrocytes in situ, consistent with our previous study where GABAρ expression was demonstrated. Finally, we assessed the mRNA expression of GABAρ3, through different stages of postnatal development; double immunofluorescence disclosed GABAρ3 expression in calretinin-positive interneurons as well as in astrocytes (>70%). These results add new information about the participation of GABAρ subunits in neostriatal interneurons and astrocytes.


Assuntos
Astrócitos/metabolismo , Neostriado/metabolismo , Neurônios/metabolismo , Ácidos Fosfínicos/farmacologia , Piridinas/farmacologia , Receptores de GABA-A/biossíntese , Ácido gama-Aminobutírico/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Camundongos , Camundongos Transgênicos , Neostriado/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA