Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 186(24): 5254-5268.e26, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944513

RESUMO

A fundamental feature of cellular growth is that total protein and RNA amounts increase with cell size to keep concentrations approximately constant. A key component of this is that global transcription rates increase in larger cells. Here, we identify RNA polymerase II (RNAPII) as the limiting factor scaling mRNA transcription with cell size in budding yeast, as transcription is highly sensitive to the dosage of RNAPII but not to other components of the transcriptional machinery. Our experiments support a dynamic equilibrium model where global RNAPII transcription at a given size is set by the mass action recruitment kinetics of unengaged nucleoplasmic RNAPII to the genome. However, this only drives a sub-linear increase in transcription with size, which is then partially compensated for by a decrease in mRNA decay rates as cells enlarge. Thus, limiting RNAPII and feedback on mRNA stability work in concert to scale mRNA amounts with cell size.


Assuntos
Tamanho Celular , RNA Polimerase II , Transcrição Gênica , Retroalimentação , RNA Polimerase II/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Mol Cell ; 80(1): 114-126.e8, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916094

RESUMO

DNA replication is carried out by a multi-protein machine called the replisome. In Saccharomyces cerevisiae, the replisome is composed of over 30 different proteins arranged into multiple subassemblies, each performing distinct activities. Synchrony of these activities is required for efficient replication and preservation of genomic integrity. How this is achieved is particularly puzzling at the lagging strand, where current models of the replisome architecture propose turnover of the canonical lagging strand polymerase, Pol δ, at every cycle of Okazaki fragment synthesis. Here, we established single-molecule fluorescence microscopy protocols to study the binding kinetics of individual replisome subunits in live S. cerevisiae. Our results show long residence times for most subunits at the active replisome, supporting a model where all subassemblies bind tightly and work in a coordinated manner for extended periods, including Pol δ, redefining the architecture of the active eukaryotic replisome.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Células Eucarióticas/metabolismo , Complexos Multienzimáticos/metabolismo , Núcleo Celular/metabolismo , Cinética , Modelos Biológicos , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula , Fatores de Tempo
3.
Soft Matter ; 19(34): 6545-6555, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37599597

RESUMO

Bacteria have numerous large dsDNA molecules that freely interact within the cell, including multiple plasmids, primary and secondary chromosomes. The cell membrane maintains a micron-scale confinement, ensuring that the dsDNA species are proximal at all times and interact strongly in a manner influenced by the cell morphology (e.g. whether cell geometry is spherical or anisotropic). These interactions lead to non-uniform spatial organization and complex dynamics, including segregation of plasmid DNA to polar and membrane proximal regions. However, exactly how this organization arises, how it depends on cell morphology and number of interacting dsDNA species are under debate. Here, using an in vitro nanofluidic model, featuring a cavity that can be opened and closed in situ, we address how plasmid copy number and confinement geometry alter plasmid spatial distribution and dynamics. We find that increasing the plasmid number alters the plasmid spatial distribution and shortens the plasmid polar dwell time; sharper cavity end curvature leads to longer plasmid dwell times.


Assuntos
DNA , DNA/genética , Plasmídeos/genética , Anisotropia , Membrana Celular
4.
Cell ; 133(1): 90-102, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394992

RESUMO

A prevalent view of DNA replication has been that it is carried out in fixed "replication factories." By tracking the progression of sister replication forks with respect to genetic loci in live Escherichia coli, we show that at initiation replisomes assemble at replication origins irrespective of where the origins are positioned within the cell. Sister replisomes separate and move to opposite cell halves shortly after initiation, migrating outwards as replication proceeds and both returning to midcell as replication termination approaches. DNA polymerase is maintained at stalled replication forks, and over short intervals of time replisomes are more dynamic than genetic loci. The data are inconsistent with models in which replisomes associated with sister forks act within a fixed replication factory. We conclude that independent replication forks follow the path of the compacted chromosomal DNA, with no structure other than DNA anchoring the replisome to any particular cellular region.


Assuntos
Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Cromossomos Bacterianos/metabolismo , Período de Replicação do DNA , Origem de Replicação , Replicon
5.
Nucleic Acids Res ; 49(14): e79, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33744965

RESUMO

DNA-bound proteins are essential elements for the maintenance, regulation, and use of the genome. The time they spend bound to DNA provides useful information on their stability within protein complexes and insight into the understanding of biological processes. Single-particle tracking allows for direct visualization of protein-DNA kinetics, however, identifying whether a molecule is bound to DNA can be non-trivial. Further complications arise when tracking molecules for extended durations in processes with slow kinetics. We developed a machine learning approach, termed Bound2Learn, using output from a widely used tracking software, to robustly classify tracks in order to accurately estimate residence times. We validated our approach in silico, and in live-cell data from Escherichia coli and Saccharomyces cerevisiae. Our method has the potential for broad utility and is applicable to other organisms.


Assuntos
Biologia Computacional/métodos , Proteínas de Ligação a DNA/metabolismo , Aprendizado de Máquina , Imagem Individual de Molécula/métodos , Imagem com Lapso de Tempo/métodos , Algoritmos , Simulação por Computador , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(31): 18540-18549, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675239

RESUMO

Once described as mere "bags of enzymes," bacterial cells are in fact highly organized, with many macromolecules exhibiting nonuniform localization patterns. Yet the physical and biochemical mechanisms that govern this spatial heterogeneity remain largely unknown. Here, we identify liquid-liquid phase separation (LLPS) as a mechanism for organizing clusters of RNA polymerase (RNAP) in Escherichia coli Using fluorescence imaging, we show that RNAP quickly transitions from a dispersed to clustered localization pattern as cells enter log phase in nutrient-rich media. RNAP clusters are sensitive to hexanediol, a chemical that dissolves liquid-like compartments in eukaryotic cells. In addition, we find that the transcription antitermination factor NusA forms droplets in vitro and in vivo, suggesting that it may nucleate RNAP clusters. Finally, we use single-molecule tracking to characterize the dynamics of cluster components. Our results indicate that RNAP and NusA molecules move inside clusters, with mobilities faster than a DNA locus but slower than bulk diffusion through the nucleoid. We conclude that RNAP clusters are biomolecular condensates that assemble through LLPS. This work provides direct evidence for LLPS in bacteria and demonstrates that this process can serve as a mechanism for intracellular organization in prokaryotes and eukaryotes alike.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Imagem Individual de Molécula , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(24): 11747-11753, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31127046

RESUMO

The replisome is a multiprotein machine that is responsible for replicating DNA. During active DNA synthesis, the replisome tightly associates with DNA. In contrast, after DNA damage, the replisome may disassemble, exposing DNA to breaks and threatening cell survival. Using live cell imaging, we studied the effect of UV light on the replisome of Escherichia coli Surprisingly, our results showed an increase in Pol III holoenzyme (Pol III HE) foci post-UV that do not colocalize with the DnaB helicase. Formation of these foci is independent of active replication forks and dependent on the presence of the χ subunit of the clamp loader, suggesting recruitment of Pol III HE at sites of DNA repair. Our results also showed a decrease of DnaB helicase foci per cell after UV, consistent with the disassembly of a fraction of the replisomes. By labeling newly synthesized DNA, we demonstrated that a drop in the rate of synthesis is not explained by replisome disassembly alone. Instead, we show that most replisomes continue synthesizing DNA at a slower rate after UV. We propose that the slowdown in replisome activity is a strategy to prevent clashes with engaged DNA repair proteins and preserve the integrity of the replication fork.


Assuntos
DNA Bacteriano/genética , Escherichia coli/genética , Raios Ultravioleta/efeitos adversos , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA , DnaB Helicases/genética
8.
Mol Microbiol ; 114(3): 495-509, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32426857

RESUMO

DNA replication complexes (replisomes) routinely encounter proteins and unusual nucleic acid structures that can impede their progress. Barriers can include transcription complexes and R-loops that form when RNA hybridizes with complementary DNA templates behind RNA polymerases. Cells encode several RNA polymerase and R-loop clearance mechanisms to limit replisome exposure to these potential obstructions. One such mechanism is hydrolysis of R-loops by ribonuclease HI (RNase HI). Here, we examine the cellular role of the interaction between Escherichia coli RNase HI and the single-stranded DNA-binding protein (SSB) in this process. Interaction with SSB localizes RNase HI foci to DNA replication sites. Mutation of rnhA to encode an RNase HI variant that cannot interact with SSB but that maintains enzymatic activity (rnhAK60E) eliminates RNase HI foci. The mutation also produces a media-dependent slow-growth phenotype and an activated DNA damage response in cells lacking Rep helicase, which is an enzyme that disrupts stalled transcription complexes. RNA polymerase variants that are thought to increase or decrease R-loop accumulation enhance or suppress, respectively, the growth phenotype of rnhAK60E rep::kan strains. These results identify a cellular role for the RNase HI/SSB interaction in helping to clear R-loops that block DNA replication.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Ribonuclease H/metabolismo , Reparo do DNA , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Mutação , Estruturas R-Loop/genética , Imagem Individual de Molécula
9.
Annu Rev Genet ; 46: 121-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22934648

RESUMO

In dividing cells, chromosome duplication once per generation must be coordinated with faithful segregation of newly replicated chromosomes and with cell growth and division. Many of the mechanistic details of bacterial replication elongation are well established. However, an understanding of the complexities of how replication initiation is controlled and coordinated with other cellular processes is emerging only slowly. In contrast to eukaryotes, in which replication and segregation are separate in time, the segregation of most newly replicated bacterial genetic loci occurs sequentially soon after replication. We compare the strategies used by chromosomes and plasmids to ensure their accurate duplication and segregation and discuss how these processes are coordinated spatially and temporally with growth and cell division. We also describe what is known about the three conserved families of ATP-binding proteins that contribute to chromosome segregation and discuss their inter-relationships in a range of disparate bacteria.


Assuntos
Segregação de Cromossomos , Cromossomos Bacterianos/genética , Replicação do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Cromossomos Bacterianos/metabolismo , DNA Primase , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Transcrição Gênica , Translocação Genética
10.
Biochem Soc Trans ; 47(4): 1067-1075, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31395754

RESUMO

Faithful DNA replication is required for transmission of the genetic material across generations. The basic mechanisms underlying this process are shared among all organisms: progressive unwinding of the long double-stranded DNA; synthesis of RNA primers; and synthesis of a new DNA chain. These activities are invariably performed by a multi-component machine called the replisome. A detailed description of this molecular machine has been achieved in prokaryotes and phages, with the replication processes in eukaryotes being comparatively less known. However, recent breakthroughs in the in vitro reconstitution of eukaryotic replisomes have resulted in valuable insight into their functions and mechanisms. In conjunction with the developments in eukaryotic replication, an emerging overall view of replisomes as dynamic protein ensembles is coming into fruition. The purpose of this review is to provide an overview of the recent insights into the dynamic nature of the bacterial replisome, revealed through single-molecule techniques, and to describe some aspects of the eukaryotic replisome under this framework. We primarily focus on Escherichia coli and Saccharomyces cerevisiae (budding yeast), since a significant amount of literature is available for these two model organisms. We end with a description of the methods of live-cell fluorescence microscopy for the characterization of replisome dynamics.


Assuntos
Proteínas de Bactérias/metabolismo , Replicação do DNA , Escherichia coli/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , DNA Fúngico/biossíntese , DNA Fúngico/genética , Escherichia coli/genética , Modelos Biológicos , Saccharomyces cerevisiae/genética
11.
Soft Matter ; 15(42): 8639, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31631208

RESUMO

Correction for 'Probing the organization and dynamics of two DNA chains trapped in a nanofluidic cavity' by Xavier Capaldi et al., Soft Matter, 2018, 14, 8455-8465.

12.
Soft Matter ; 14(42): 8455-8465, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30187055

RESUMO

Here we present a pneumatically-actuated nanofluidic platform that has the capability of dynamically controlling the confinement environment of macromolecules in solution. Using a principle familiar from classic devices based on soft-lithography, the system uses pneumatic pressure to deflect a thin nitride lid into a nanoslit, confining molecules in an array of cavities embedded in the slit. We use this system to quantify the interactions of multiple confined DNA chains, a key problem in polymer physics with important implications for nanofluidic device performance and DNA partitioning/organization in bacteria and the eukaryotes. In particular, we focus on the problem of two-chain confinement, using differential staining of the chains to independently assess the chain conformation, determine the degree of partitioning/mixing in the cavities and assess coupled diffusion of the chain center-of-mass positions. We find that confinement of more than one chain in the cavity can have a drastic impact on the polymer dynamics and conformation.


Assuntos
DNA/química , DNA/metabolismo , Nanotecnologia , Difusão
14.
Nucleic Acids Res ; 42(2): 1042-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24137005

RESUMO

Bacterial plasmids play important roles in the metabolism, pathogenesis and bacterial evolution and are highly versatile biotechnological tools. Stable inheritance of plasmids depends on their autonomous replication and efficient partition to daughter cells at cell division. Active partition systems have not been identified for high-copy number plasmids, and it has been generally believed that they are partitioned randomly at cell division. Nevertheless, direct evidence for the cellular location of replicating and nonreplicating plasmids, and the partition mechanism has been lacking. We used as model pJHCMW1, a plasmid isolated from Klebsiella pneumoniae that includes two ß-lactamase and two aminoglycoside resistance genes. Here we report that individual ColE1-type plasmid molecules are mobile and tend to be excluded from the nucleoid, mainly localizing at the cell poles but occasionally moving between poles along the long axis of the cell. As a consequence, at the moment of cell division, most plasmid molecules are located at the poles, resulting in efficient random partition to the daughter cells. Complete replication of individual molecules occurred stochastically and independently in the nucleoid-free space throughout the cell cycle, with a constant probability of initiation per plasmid.


Assuntos
Bactérias/genética , Plasmídeos/fisiologia , Ciclo Celular/genética , Divisão Celular , Replicação do DNA , Difusão , Klebsiella pneumoniae/citologia , Klebsiella pneumoniae/genética , Plasmídeos/biossíntese , Processos Estocásticos
15.
Proc Natl Acad Sci U S A ; 110(20): 8063-8, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630273

RESUMO

Cellular DNA damage is reversed by balanced repair pathways that avoid accumulation of toxic intermediates. Despite their importance, the organization of DNA repair pathways and the function of repair enzymes in vivo have remained unclear because of the inability to directly observe individual reactions in living cells. Here, we used photoactivation, localization, and tracking in live Escherichia coli to directly visualize single fluorescent labeled DNA polymerase I (Pol) and ligase (Lig) molecules searching for DNA gaps and nicks, performing transient reactions, and releasing their products. Our general approach provides enzymatic rates and copy numbers, substrate-search times, diffusion characteristics, and the spatial distribution of reaction sites, at the single-cell level, all in one measurement. Single repair events last 2.1 s (Pol) and 2.5 s (Lig), respectively. Pol and Lig activities increased fivefold over the basal level within minutes of DNA methylation damage; their rates were limited by upstream base excision repair pathway steps. Pol and Lig spent >80% of their time searching for free substrates, thereby minimizing both the number and lifetime of toxic repair intermediates. We integrated these single-molecule observations to generate a quantitative, systems-level description of a model repair pathway in vivo.


Assuntos
Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , Escherichia coli/genética , Citosol/metabolismo , Metilação de DNA , DNA Polimerase Dirigida por DNA/metabolismo , Difusão , Escherichia coli/metabolismo , Microscopia de Fluorescência , Ligação Proteica , Especificidade por Substrato
16.
Proc Natl Acad Sci U S A ; 108(26): E243-50, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670292

RESUMO

Characterized bacteria, unlike eukaryotes and some archaea, initiate replication bidirectionally from a single replication origin contained within a circular or linear chromosome. We constructed Escherichia coli cells with two WT origins separated by 1 Mb in their 4.64-Mb chromosome. Productive bidirectional replication initiated synchronously at both spatially separate origins. Newly replicated DNA from both origins was segregated sequentially as replication progressed, with two temporally and spatially separate replication termination events. Replication initiation occurred at a cell volume identical to that of cells with a single WT origin, showing that initiation control is independent of cellular and chromosomal oriC concentration. Cells containing just the ectopic origin initiated bidirectional replication at the expected cell mass and at the normal cellular location of that region. In all strains, spatial separation of sister loci adjacent to active origins occurred shortly after their replication, independently of whether replication initiated at the normal origin, the ectopic origin, or both origins.


Assuntos
Cromossomos Bacterianos , Escherichia coli/genética , Origem de Replicação , Ciclo Celular , Citometria de Fluxo
17.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514187

RESUMO

RNA polymerase II transcription elongation directs an intricate pattern of histone modifications. This pattern includes a regulatory cascade initiated by the elongation factor Rtf1, leading to monoubiquitylation of histone H2B, and subsequent methylation of histone H3 on lysine 4. Previous studies have defined the molecular basis for these regulatory relationships, but it remains unclear how they regulate gene expression. To address this question, we investigated a drug resistance phenotype that characterizes defects in this axis in the model eukaryote Schizosaccharomyces pombe (fission yeast). The mutations caused resistance to the ribonucleotide reductase inhibitor hydroxyurea (HU) that correlated with a reduced effect of HU on dNTP pools, reduced requirement for the S-phase checkpoint, and blunting of the transcriptional response to HU treatment. Mutations in the C-terminal repeat domain of the RNA polymerase II large subunit Rpb1 led to similar phenotypes. Moreover, all the HU-resistant mutants also exhibited resistance to several azole-class antifungal agents. Our results suggest a novel, shared gene regulatory function of the Rtf1-H2Bub1-H3K4me axis and the Rpb1 C-terminal repeat domain in controlling fungal drug tolerance.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Código das Histonas , Histonas/genética , Histonas/metabolismo , Resistência a Múltiplos Medicamentos
18.
mSphere ; 9(3): e0078923, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38353533

RESUMO

Aminoglycosides are essential components in the available armamentarium to treat bacterial infections. The surge and rapid dissemination of resistance genes strongly reduce their efficiency, compromising public health. Among the multitude of modifying enzymes that confer resistance to aminoglycosides, the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] is the most prevalent and relevant in the clinical setting as it can inactivate numerous aminoglycosides, such as amikacin. Although the mechanism of action, structure, and biochemical properties of the AAC(6')-Ib protein have been extensively studied, the contribution of the intracellular milieu to its activity remains unclear. In this work, we used a fluorescent-based system to quantify the number of AAC(6')-Ib per cell in Escherichia coli, and we modulated this copy number with the CRISPR interference method. These tools were then used to correlate enzyme concentrations with amikacin resistance levels. Our results show that resistance to amikacin increases linearly with a higher concentration of AAC(6')-Ib until it reaches a plateau at a specific protein concentration. In vivo imaging of this protein shows that it diffuses freely within the cytoplasm of the cell, but it tends to form inclusion bodies at higher concentrations in rich culture media. Addition of a chelating agent completely dissolves these aggregates and partially prevents the plateau in the resistance level, suggesting that AAC(6')-Ib aggregation lowers resistance to amikacin. These results provide the first step in understanding the cellular impact of each AAC(6')-Ib molecule on aminoglycoside resistance. They also highlight the importance of studying its dynamic behavior within the cell.IMPORTANCEAntibiotic resistance is a growing threat to human health. Understanding antibiotic resistance mechanisms can serve as foundation for developing innovative treatment strategies to counter this threat. While numerous studies clarified the genetics and dissemination of resistance genes and explored biochemical and structural features of resistance enzymes, their molecular dynamics and individual contribution to resistance within the cellular context remain unknown. Here, we examined this relationship modulating expression levels of aminoglycoside 6'-N-acetyltransferase type Ib, an enzyme of clinical relevance. We show a linear correlation between copy number of the enzyme per cell and amikacin resistance levels up to a threshold where resistance plateaus. We propose that at concentrations below the threshold, the enzyme diffuses freely in the cytoplasm but aggregates at the cell poles at concentrations over the threshold. This research opens promising avenues for studying enzyme solubility's impact on resistance, creating opportunities for future approaches to counter resistance.


Assuntos
Amicacina , Antibacterianos , Humanos , Amicacina/farmacologia , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Escherichia coli
19.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168340

RESUMO

Aminoglycosides are essential components in the available armamentarium to treat bacterial infections. The surge and rapid dissemination of resistance genes strongly reduce their efficiency, compromising public health. Among the multitude of modifying enzymes that confer resistance to aminoglycosides, the aminoglycoside acetyltransferase AAC(6')-Ib is the most prevalent and relevant in the clinical setting as it can inactivate numerous aminoglycosides, such as amikacin. Although the mechanism of action, structure, and biochemical properties of the AAC(6')-Ib protein have been extensively studied, the contribution of the intracellular milieu to its activity remains unclear. In this work, we used a fluorescent-based system to quantify the number of AAC(6')-Ib per cell in Escherichia coli, and we modulated this copy number with the CRISPR interference method. These tools were then used to correlate enzyme concentrations with amikacin resistance levels. Our results show that resistance to amikacin increases linearly with a higher concentration of AAC(6')-Ib until it reaches a plateau at a specific protein concentration. In vivo imaging of this protein shows that it diffuses freely within the cytoplasm of the cell, but it tends to form inclusion bodies at higher concentrations in rich culture media. Addition of a chelating agent completely dissolves these aggregates and partially prevents the plateau in the resistance level, suggesting that AAC(6')-Ib aggregation lowers resistance to amikacin. These results provide the first step in understanding the cellular impact of each AAC(6')-Ib molecule on aminoglycoside resistance. They also highlight the importance of studying its dynamic behavior within the cell.

20.
J Bacteriol ; 194(17): 4669-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22753058

RESUMO

SMC (structural maintenance of chromosomes) complexes function ubiquitously in organizing and maintaining chromosomes. Functional fluorescent derivatives of the Escherichia coli SMC complex, MukBEF, form foci that associate with the replication origin region (ori). MukBEF impairment results in mispositioning of ori and other loci in steady-state cells. These observations led to an earlier proposal that MukBEF positions new replicated sister oris. We show here that MukBEF generates and maintains the cellular positioning of chromosome loci independently of DNA replication. Rapid impairment of MukBEF function by depleting a Muk component in the absence of DNA replication leads to loss of MukBEF foci as well as mispositioning of ori and other loci, while rapid Muk synthesis leads to rapid MukBEF focus formation but slow restoration of normal chromosomal locus positioning.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/biossíntese , Segregação de Cromossomos , Replicação do DNA , Proteínas de Escherichia coli/biossíntese , Origem de Replicação , Proteínas Repressoras/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA