RESUMO
Among ectotherms, rare species are expected to have a narrower thermal niche breadth and reduced acclimation capacity and thus be more vulnerable to global warming than their common relatives. To assess these hypotheses, we experimentally quantified the thermal sensitivity of seven common, uncommon, and rare species of temperate marine annelids of the genus Ophryotrocha to assess their vulnerability to ocean warming. We measured the upper and lower limits of physiological thermal tolerance, survival, and reproductive performance of each species along a temperature gradient (18, 24, and 30 °C). We then combined this information to produce curves of each species' fundamental thermal niche by including trait plasticity. Each thermal curve was then expressed as a habitat suitability index (HSI) and projected for the Mediterranean Sea and temperate Atlantic Ocean under a present day (1970-2000), mid- (2050-2059) and late- (2090-2099) 21st Century scenario for two climate change scenarios (RCP2.6 and RCP8.5). Rare and uncommon species showed a reduced upper thermal tolerance compared to common species, and the niche breadth and acclimation capacity were comparable among groups. The simulations predicted an overall increase in the HSI for all species and identified potential hotspots of HSI decline for uncommon and rare species along the warm boundaries of their potential distribution, though they failed to project the higher sensitivity of these species into a greater vulnerability to ocean warming. In the discussion, we provide some caveats on the implications of our results for conservation efforts.
Assuntos
Mudança Climática , Aquecimento Global , Aclimatação , Ecossistema , Oceanos e Mares , TemperaturaRESUMO
In this article, we analyze the impacts of climate change on Antarctic marine ecosystems. Observations demonstrate large-scale changes in the physical variables and circulation of the Southern Ocean driven by warming, stratospheric ozone depletion, and a positive Southern Annular Mode. Alterations in the physical environment are driving change through all levels of Antarctic marine food webs, which differ regionally. The distributions of key species, such as Antarctic krill, are also changing. Differential responses among predators reflect differences in species ecology. The impacts of climate change on Antarctic biodiversity will likely vary for different communities and depend on species range. Coastal communities and those of sub-Antarctic islands, especially range-restricted endemic communities, will likely suffer the greatest negative consequences of climate change. Simultaneously, ecosystem services in the Southern Ocean will likely increase. Such decoupling of ecosystem services and endemic species will require consideration in the management of human activities such as fishing in Antarctic marine ecosystems.