Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 107: 103536, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32777345

RESUMO

Peroxisomes exist in nearly every cell, oxidizing fats, synthesizing lipids and maintaining redox balance. As the brain ages, multiple pathways are negatively affected, but it is currently unknown if peroxisomal proteins are affected by aging in the brain. While recent studies have investigated a PEX5 homolog in aging C. elegans models and found that it is reduced in aging, it is unclear if PEX5, a mammalian peroxisomal protein that plays a role in peroxisomal homeostasis and degradation, is affected in the aging brain. To answer this question, we first determined the amount of PEX5, in brain homogenates from young (3 months) and aged (26 through 32+ months of age) wild-type mice of both sexes. PEX5 protein was decreased in aged male brains, but this reduction was not significant in female brains. RNAScope and real-time qPCR analyses showed that Pex5 mRNA was also reduced in aged male brain cortices, but not in females. Immunohistochemistry assays of cortical neurons in young and aged male brains showed that the amount of neuronal PEX5 was reduced in aged male brains. Cortical neurons in aged female mice also had reduced PEX5 levels in comparison to younger female mice. In conclusion, total PEX5 levels and Pex5 gene expression both decrease with age in male brains, and neuronal PEX5 levels lower in an age-dependent manner in the cortices of animals of both sexes.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Neurônios/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Animais , Citosol/metabolismo , Feminino , Masculino , Camundongos , Peroxissomos/genética , Transporte Proteico/genética , Receptores Citoplasmáticos e Nucleares/genética , Ubiquitinação
2.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138161

RESUMO

Amyloid plaques in Alzheimer's disease (AD) are associated with inflammation. Recent studies demonstrated the involvement of the gut in cerebral amyloid-beta (Aß) pathogenesis; however, the mechanisms are still not well understood. We hypothesize that the gut bears the Aß burden prior to brain, highlighting gut-brain axis (GBA) interaction in neurodegenerative disorders. We used pre-symptomatic (6-months) and symptomatic (15-months) Tg2576 mouse model of AD compared to their age-matched littermate WT control. We identified that dysfunction of intestinal epithelial barrier (IEB), dysregulation of absorption, and vascular Aß deposition in the IEB occur before cerebral Aß aggregation is detectible. These changes in the GBA were associated with elevated inflammatory plasma cytokines including IL-9, VEGF and IP-10. In association with reduced cerebral myelin tight junction proteins, we identified reduced levels of systemic vitamin B12 and decrease cubilin, an intestinal B12 transporter, after the development of cerebral Aß pathology. Lastly, we report Aß deposition in the intestinal autopsy from AD patients with confirmed cerebral Aß pathology that is not present in intestine from non-AD controls. Our data provide evidence that gut dysfunction occurs in AD and may contribute to its etiology. Future therapeutic strategies to reverse AD pathology may involve the early manipulation of gut physiology and its microbiota.


Assuntos
Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Quimiocina CXCL10/metabolismo , Feminino , Microbioma Gastrointestinal/genética , Interleucina-9/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Placa Amiloide/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vitamina B 12/metabolismo
3.
Front Immunol ; 10: 870, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105697

RESUMO

Background: The location of coelomocyte proliferation in adult sea urchins is unknown and speculations since the early 1800s have been based on microanatomy and tracer uptake studies. In adult sea urchins (Strongylocentrotus purpuratus) with down-regulated immune systems, coelomocyte numbers increase in response to immune challenge, and whether some or all of these cells are newly proliferated is not known. The gene regulatory network that encodes transcription factors that control hematopoiesis in embryonic and larval sea urchins has not been investigated in adults. Hence, to identify the hematopoietic tissue in adult sea urchins, cell proliferation, expression of phagocyte specific genes, and expression of genes encoding transcription factors that function in the conserved regulatory network that controls hematopoiesis in embryonic and larval sea urchins were investigated for several tissues. Results: Cell proliferation was induced in adult sea urchins either by immune challenge through injection of heat-killed Vibrio diazotrophicus or by cell depletion through aspiration of coelomic fluid. In response to either of these stimuli, newly proliferated coelomocytes constitute only about 10% of the cells in the coelomic fluid. In tissues, newly proliferated cells and cells that express SpTransformer proteins (formerly Sp185/333) that are markers for phagocytes are present in the axial organ, gonad, pharynx, esophagus, and gut with no differences among tissues. The expression level of genes encoding transcription factors that regulate hematopoiesis show that both the axial organ and the pharynx have elevated expression compared to coelomocytes, esophagus, gut, and gonad. Similarly, an RNAseq dataset shows similar results for the axial organ and pharynx, but also suggests that the axial organ may be a site for removal and recycling of cells in the coelomic cavity. Conclusions: Results presented here are consistent with previous speculations that the axial organ may be a site of coelomocyte proliferation and that it may also be a center for cellular removal and recycling. A second site, the pharynx, may also have hematopoietic activity, a tissue that has been assumed to function only as part of the intestinal tract.


Assuntos
Hematopoese/imunologia , Faringe/imunologia , Ouriços-do-Mar/imunologia , Animais , Proliferação de Células/fisiologia , Sistema Imunitário/imunologia , Fagócitos/imunologia , Fatores de Transcrição/imunologia , Vibrio/imunologia
4.
Front Immunol ; 10: 1298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244844

RESUMO

The adaptive immune response in jawed vertebrates is marked by the ability to diversify somatically specific immune receptor genes. Somatic recombination and hypermutation of gene segments are used to generate extensive repertoires of T and B cell receptors. In contrast, jawless vertebrates utilize a distinct diversification system based on copy choice to assemble their variable lymphocyte receptors. To date, very little evidence for somatic immune gene diversification has been reported in invertebrate species. Here we show that the SpTransformer (SpTrf ; formerly Sp185/333) immune effector gene family members from individual coelomocytes from purple sea urchins undergo somatic diversification by means of gene deletions, duplications, and acquisitions of single nucleotide polymorphisms. While sperm cells from an individual sea urchin have identical SpTrf gene repertoires, single cells from two distinct coelomocyte subpopulations from the same sea urchin exhibit significant variation in the SpTrf gene repertoires. Moreover, the highly diverse gene sequences derived from single coelomocytes are all in-frame, suggesting that an unknown mechanism(s) driving these somatic changes involve stringent selection or correction processes for expression of productive SpTrf transcripts. Together, our findings infer somatic immune gene diversification strategy in an invertebrate.


Assuntos
Imunidade Adaptativa/genética , Evolução Biológica , Coelomomyces/genética , Coelomomyces/imunologia , Variação Genética , Ouriços-do-Mar/microbiologia , Animais , Genes Fúngicos , Genoma Fúngico , Genômica/métodos , Genótipo , Família Multigênica , Fases de Leitura Aberta , Filogenia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA