RESUMO
Periodontitis is a chronic inflammatory disease driven by dysbiosis in subgingival microbial communities leading to increased abundance of a limited number of pathobionts, including Porphyromonas gingivalis and Treponema denticola. Oral health, particularly periodontitis, is a modifiable risk factor for Alzheimer disease (AD) pathogenesis, with components of both these bacteria identified in postmortem brains of persons with AD. Repeated oral inoculation of mice with P. gingivalis results in brain infiltration of bacterial products, increased inflammation, and induction of AD-like biomarkers. P. gingivalis displays synergistic virulence with T. denticola during periodontitis. The aim of the current study was to determine the ability of P. gingivalis and T. denticola, grown in physiologically relevant conditions, individually and in combination, to induce AD-like pathology following chronic oral inoculation of female mice over 12 weeks. P. gingivalis alone significantly increased all 7 brain pathologies examined: neuronal damage, activation of astrocytes and microglia, expression of inflammatory cytokines interleukin 1ß (IL-1ß) and interleukin 6 and production of amyloid-ß plaques and hyperphosphorylated tau, in the hippocampus, cortex and midbrain, compared to control mice. T. denticola alone significantly increased neuronal damage, activation of astrocytes and microglia, and expression of IL-1ß, in the hippocampus, cortex and midbrain, compared to control mice. Coinoculation of P. gingivalis with T. denticola significantly increased activation of astrocytes and microglia in the hippocampus, cortex and midbrain, and increased production of hyperphosphorylated tau and IL-1ß in the hippocampus only. The host brain response elicited by oral coinoculation was less than that elicited by each bacterium, suggesting coinoculation was less pathogenic.
Assuntos
Doença de Alzheimer , Infecções por Bacteroidaceae , Encéfalo , Modelos Animais de Doenças , Porphyromonas gingivalis , Treponema denticola , Animais , Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Camundongos , Feminino , Encéfalo/patologia , Encéfalo/microbiologia , Infecções por Bacteroidaceae/microbiologia , Periodontite/microbiologia , Periodontite/patologia , Microglia/microbiologia , Infecções por Treponema/microbiologia , Infecções por Treponema/patologia , Camundongos Endogâmicos C57BL , Astrócitos/microbiologia , Astrócitos/patologia , Placa Amiloide/patologia , Placa Amiloide/microbiologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Peptídeos beta-Amiloides/metabolismoRESUMO
The cause of Alzheimer's disease (AD), and the pathophysiological mechanisms involved, remain major unanswered questions in medical science. Oral bacteria, especially those species associated with chronic periodontitis and particularly Porphyromonas gingivalis, are being linked causally to AD pathophysiology in a subpopulation of susceptible individuals. P. gingivalis produces large amounts of proteolytic enzymes, haem and iron capture proteins, adhesins and internalins that are secreted and attached to the cell surface and concentrated onto outer membrane vesicles (OMVs). These enzymes and adhesive proteins have been shown to cause host tissue damage and stimulate inflammatory responses. The ecological and pathophysiological roles of P. gingivalis OMVs, their ability to disperse widely throughout the host and deliver functional proteins lead to the proposal that they may be the link between a P. gingivalis focal infection in the subgingivae during periodontitis and neurodegeneration in AD. P. gingivalis OMVs can cross the blood brain barrier and may accelerate AD-specific neuropathology by increasing neuroinflammation, plaque/tangle formation and dysregulation of iron homeostasis, thereby inducing ferroptosis leading to neuronal death and neurodegeneration.
Assuntos
Doença de Alzheimer , Periodontite , Humanos , Porphyromonas gingivalis/genética , Adesinas Bacterianas/metabolismo , Periodontite/microbiologia , FerroRESUMO
Flavobacterium johnsoniae is a free-living member of the Bacteroidota phylum that is found in soil and water. It is frequently used as a model species for studying a type of gliding motility dependent on the type IX secretion system (T9SS). O-Glycosylation has been reported in several Bacteroidota species, and the O-glycosylation of S-layer proteins in Tannerella forsythia was shown to be important for certain virulence features. In this study, we characterized the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The structure of the major glycan was found to be a hexasaccharide with the sequence Hex-(Me-dHex)-Me-HexA-Pent-HexA-Me-HexNAcA. Bioinformatic localization of the glycoproteins predicted 68 inner membrane proteins, 60 periplasmic proteins, 26 outer membrane proteins, 57 lipoproteins, and 9 proteins secreted by the T9SS. The glycosylated sites were predominantly located in the periplasm, where they are postulated to be beneficial for protein folding/stability. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated. IMPORTANCE Flavobacterium johnsoniae is a Gram-negative bacterium that is found in soil and water. It is frequently used as a model species for studying gliding motility and the T9SS. In this study, we characterized the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The glycosylated domains were mainly localized to the periplasm. The function of O-glycosylation is likely related to protein folding and stability; therefore, the finding of the glycosylation sites has relevance for studies involving expression of the proteins. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated, which may impact the structure and function of these components.
Assuntos
Proteínas de Bactérias , Flavobacterium , Proteínas de Bactérias/metabolismo , Flavobacterium/genética , Polissacarídeos/metabolismo , Glicosilação , ProteomaRESUMO
The human oral microbiome is becoming recognized as playing roles in health and disease well beyond the oral cavity over the lifetime of the individual. The oral microbiome is hypothesized to result from specific colonization events followed by a reproducible and ordered development of complex bacterial communities. Colonization events, proliferation, succession and subsequent community development are dependent on a range of host and environmental factors, most notably the neonate diet. It is now becoming apparent that early childhood and prenatal influences can have long term effects on the development of human oral microbiomes. In this review, the temporal development of the infant human oral microbiome is examined, with the effects of prenatal and postnatal influences and the roles of specific bacteria. Dietary and environmental factors, especially breastfeeding, have a significant influence on the development of the infant oral microbiome. The evidence available regarding the roles and functions of early colonizing bacteria is still limited, and gaps in knowledge where further research is needed to elucidate these specific roles in relation to health and disease still exist.
Assuntos
Microbioma Gastrointestinal , Microbiota , Lactente , Recém-Nascido , Gravidez , Feminino , Humanos , Pré-Escolar , Bactérias/genética , Boca/microbiologia , Aleitamento MaternoRESUMO
The Bacteroidetes type IX secretion system (T9SS) consists of at least 20 components that translocate proteins with type A or type B C-terminal domain (CTD) signals across the outer membrane (OM). While type A CTD proteins are anchored to the cell surface via covalent linkage to the anionic lipopolysaccharide, it is still unclear how type B CTD proteins are anchored to the cell surface. Moreover, very little is known about the PorE and PorP components of the T9SS. In this study, for the first time, we identified a complex comprising the OM ß-barrel protein PorP, the OM-associated periplasmic protein PorE and the type B CTD protein PG1035. Cross-linking studies supported direct interactions between PorE-PorP and PorP-PG1035. Furthermore, we show that the formation of the PorE-PorP-PG1035 complex was independent of PorU and PorV. Additionally, the Flavobacterium johnsoniae PorP-like protein, SprF, was found bound to the major gliding motility adhesin, SprB, which is also a type B CTD protein. Together, these results suggest that type B-CTD proteins may anchor to the cell surface by binding to their respective PorP-like proteins.
Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Transporte Biológico , Proteínas de Membrana/metabolismo , Transporte ProteicoRESUMO
Porphyromonas gingivalis, a bacterial pathogen contributing to human periodontitis, exports and anchors cargo proteins to its surface, enabling the production of black pigmentation using a type IX secretion system (T9SS) and conjugation to anionic lipopolysaccharide (A-LPS). To determine whether T9SS components need to be assembled in situ for correct secretion and A-LPS modification of cargo proteins, combinations of nonpigmented mutants lacking A-LPS or a T9SS component were mixed to investigate in trans complementation. Reacquisition of pigmentation occurred only between an A-LPS mutant and a T9SS mutant, which coincided with A-LPS modification of cargo proteins detected by Western blotting and coimmunoprecipitation/quantitative mass spectrometry. Complementation also occurred using an A-LPS mutant mixed with outer membrane vesicles (OMVs) or purified A-LPS. Fluorescence experiments demonstrated that OMVs can fuse with and transfer lipid to P. gingivalis, leading to the conclusion that complementation of T9SS function occurred through A-LPS transfer between cells. None of the two-strain crosses involving only the five T9SS OM component mutants produced black pigmentation, implying that the OM proteins cannot be transferred in a manner that restores function and surface pigmentation, and hence, a more ordered temporal in situ assembly of T9SS components may be required. Our results show that LPS can be transferred between cells or between cells and OMVs to complement deficiencies in LPS biosynthesis and hemin-related pigmentation to reveal a potentially new mechanism by which the oral microbial community is modulated to produce clinical consequences in the human host.IMPORTANCEPorphyromonas gingivalis is a keystone pathogen contributing to periodontitis in humans, leading to tooth loss. The oral microbiota is essential in this pathogenic process and changes from predominantly Gram-positive (health) to predominantly Gram-negative (disease) species. P. gingivalis uses its type IX secretion system (T9SS) to secrete and conjugate virulence proteins to anionic lipopolysaccharide (A-LPS). This study investigated whether components of this secretion system could be complemented and found that it was possible for A-LPS biosynthetic mutants to be complemented in trans both by strains that had the A-LPS on the cell surface and by exogenous sources of A-LPS. This is the first known example of LPS exchange in a human bacterial pathogen which causes disease through complex microbiota-host interactions.
Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Lipopolissacarídeos/metabolismo , Porphyromonas gingivalis/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Mutação , Pigmentação/genética , Porphyromonas gingivalis/genéticaRESUMO
Periodontitis is a chronic inflammatory disease with a complex underlying immunopathology. Cytokines, as molecular mediators of inflammation, play a role in all stages of disease progression. T helper 17 (Th17) cells are thought to play a role in periodontitis. Th17 cell development and maintenance requires a pro-inflammatory cytokine milieu, with many of the cytokines implicated in the pathogenesis of periodontitis. Serum and saliva are easily accessible biofluids which can represent the systemic and local environment to promote the development of Th17 cells. Here we review human clinical studies that investigate IL-1ß, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in serum and saliva in periodontitis. We highlight their putative role in the pathogenesis of periodontitis and place them within a wider context of animal and other clinical studies.
Assuntos
Citocinas/metabolismo , Periodontite/sangue , Periodontite/metabolismo , Saliva/metabolismo , Células Th17/metabolismo , Animais , Estudos Transversais , Humanos , Inflamação/metabolismo , Interleucina-17/biossíntese , Interleucina-33/biossíntese , Interleucinas/biossíntese , Estudos Longitudinais , CamundongosRESUMO
BACKGROUND AND OBJECTIVES: Neutrophils are emerging as a key player in periodontal pathogenesis. The surface expression of cellular markers enables functional phenotyping of neutrophils which have distinct roles in disease states. This study aimed to evaluate the effect of periodontal management on neutrophil phenotypes in peripheral blood in periodontitis patients over one year. MATERIALS AND METHODS: Peripheral blood and the periodontal parameters, mean probing depth and percentage of sites with bleeding on probing (%BOP), were collected from 40 healthy controls and 54 periodontitis patients at baseline and 3-, 6- and 12- months post-treatment. Flow cytometry was used to identify CD11b+ , CD16b+ , CD62L- and CD66b+ expression on neutrophils, neutrophil maturation stages as promyelocytes (CD11b- CD16b- ), metamyelocytes (CD11b+ CD16b- ) and mature neutrophils (CD11b+ CD16b+ ), and suppressive neutrophil phenotype as bands (CD16dim CD62Lbright ), normal neutrophils (CD16bright CD62Lbright ) and suppressive neutrophils (CD16bright CD62Ldim ). RESULTS: CD62L- expression decreased with treatment. No differences were observed in neutrophil maturation stages in health or disease upon treatment. Suppressive and normal neutrophils showed a reciprocal relationship, where suppressive neutrophils decreased with treatment and normal neutrophils increased with treatment. In addition, %BOP was associated with suppressive neutrophils. CONCLUSION: This study demonstrates that management of periodontitis significantly modifies distinct neutrophil phenotypes in peripheral blood. Suppressive neutrophils may play a role in the pathogenesis of periodontitis. However, their exact role is unclear and requires further investigation.
Assuntos
Neutrófilos , Periodontite , Citometria de Fluxo , Humanos , Periodontite/terapia , FenótipoRESUMO
AIM: Periodontitis has been associated with other systemic diseases with underlying inflammation responsible for the shared link. This study evaluated longitudinal variation in peripheral T helper cells in periodontitis patients undergoing management over 1 year. MATERIALS AND METHODS: Periodontal parameters and peripheral blood mononuclear cells (PBMCs) were collected from 54 periodontitis patients at baseline, and 3-, 6- and 12-months post-treatment and 40 healthy controls. IFN-γ+ , IL-4+ , IL-17+ and Foxp3+ and their double-positive expression were identified in CD4+ and TCRαß+ cells using flow cytometry. PBMCs were incubated with P. gingivalis, and IFN-γ, IL-4, IL-17 and IL-10 in cell supernatant were measured by ELISA. Cells and cytokines were also assessed based on clinical response to treatment where good (<10% of sites), moderate (10-20%) and poor (>20%) treatment outcome (TxO) groups had probing depths of ≥5 mm at study conclusion. RESULTS: IFN-γ+ cells were lower at baseline, and 3- and 6-months compared to health, whereas Foxp3+ cells were increased at 12-months compared to all preceding timepoints and health. The good TxO group showed treatment-related variation in IFN-γ+ and Foxp3+ cells, whereas the poor TxO group did not. IFN-γ and IL-17 cytokine expression in cell supernatants was significantly lower at baseline compared to health, and IFN-γ and IL-10 showed treatment-related decrease. CONCLUSION: This study suggests that IFN-γ+ and Foxp3+ cells may have a role in the systemic compartment in periodontitis. Periodontal management has local and systemic effects, and thus, assessment and management of periodontitis should form an integral part of overall systemic health.
Assuntos
Periodontite , Células Th1 , Citocinas , Humanos , Interferon gama , Leucócitos Mononucleares , Periodontite/terapia , Linfócitos T Auxiliares-IndutoresRESUMO
AIMS: T-cells are known to have a role in periodontitis, however, the effect of periodontal therapy on peripheral memory T-cells is unclear. This study evaluated variation in peripheral memory T-cells and red complex bacteria in sub-gingival plaque in patients undergoing periodontal management. METHODS: Peripheral blood mononuclear cells and sub-gingival plaque were collected from 54 periodontitis patients at baseline, 3-, 6- and 12-months post-therapy and 40 healthy controls. Periodontitis patients were divided into treatment outcome (TxO) groups based on prevalence of sites with probing depth ≥5 mm as good (<10% of sites), moderate (10-20%) or poor (>20%) at study conclusion. Naïve (TN -CCR7+ CD45RA+ ), central memory (TCM -CCR7+ CD45RA- ), effector memory (TEM -CCR7- CD45RA- ) and effector memory T-cells re-expressing CD45RA (TEMRA -CCR7- CD45RA+ ) were phenotyped using flow cytometry in CD4+ , CD8+ , CD4+ CD8+ and CD4- CD8- T-cells and red complex bacteria were quantified using qPCR. RESULTS: At baseline, periodontitis subjects had significantly greater mean probing depths and Porphyromonas gingivalis proportions, lower TN but higher CD4+ TCM , CD8+ TCM , CD4+ CD8+ TEM and CD4- CD8- TEM cell proportions compared to health. Periodontal therapy decreased mean probing depths, P. gingivalis proportions, TEM and CD4+ and CD8+ TCM cells, but increased TN and CD4+ and CD8+ TEMRA cells. The T-cell profile in the good TxO group showed therapy-related changes in CD4+ TEM , and CD8+ TN and TEM cells, whereas, no changes were observed in the poor TxO group. CONCLUSION: Management and the reduction in red complex bacteria were associated with changes in peripheral memory T-cells in periodontitis.
Assuntos
Memória Imunológica , Periodontite , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Humanos , Leucócitos Mononucleares , Periodontite/terapia , Subpopulações de Linfócitos TRESUMO
Remineralisation of demineralised enamel subsurface lesions can be enhanced by pretreatment of the lesions with base (NaOH). The aim of this study was to test the effect of intralesion pH modulation on remineralisation of demineralised enamel subsurface lesions by casein phosphopeptide-stabilised amorphous calcium fluoride phosphate (CPP-ACFP) in vitro. Two remineralisation models were utilised, the first involving 60-min cyclic pH modulation for 105 h and the second involved short-term cyclic pH modulation (12-min cycle, 240 min total duration) compared with the equivalent time of continuous treatment (200 min total duration). The intralesion pH modulation was achieved by cyclic exposure to a pH 12.9 NaOH solution and a CPP-ACFP remineralisation solution at pH 5.5. Percent remineralisation was assessed using transverse microradiography with data statistically analysed using a 2-sample Student t test. For the first model, the intralesion pH modulation group had significantly (p < 0.001) higher remineralisation (43.8 ± 6.9%) than the control group (28.2 ± 5.8%) cycled with water. For the second model, the intralesion pH modulation group had significantly (p < 0.001) higher remineralisation (23.1 ± 3.4%) than the group with continuous equivalent CPP-ACFP treatment time (1.9 ± 1.3%). In both models, intralesion pH modulation significantly accelerated remineralisation, and this was attributed to the effect pH modulation had on the diffusion gradients of ions/ion pairs and the degree of saturation with respect to apatite phases within the lesion fluid.
Assuntos
Cariostáticos , Remineralização Dentária , Aceleração , Caseínas , Esmalte Dentário , Fluoretos , Humanos , Concentração de Íons de HidrogênioRESUMO
BACKGROUND: Clinical trials and laboratory studies from around the world have shown that GC Tooth Mousse Plus® (TMP) is effective in protecting teeth from tooth decay and erosion, buffering dental plaque pH, remineralising white spot lesions and reducing dentine hypersensitivity. However, no other study has assessed the experiences of oral health, before, during and after individuals becoming regular users of TMP. The aim of this study was to identify how participants' oral health status changed after introducing TMP into their oral hygiene routine. METHODS: A qualitative study using Charmaz's grounded theory methodology was conducted. Fifteen purposively sampled regular users of TMP were interviewed. Transcripts were analysed after each interview. Data analysis consisted of transcript coding, detailed memo writing, and data interpretation. RESULTS: Participants described their experiences of oral health and disease, before, during and after introducing TMP into their daily oral hygiene routine, together with the historical, biological, financial, psychosocial, and habitual dimensions of their experiences. Before becoming a regular user of TMP, participants described themselves as having a damaged mouth with vulnerable teeth, dry mouth, and sensitivity. Various aspects of participants' histories were relevant, such as, family history and history of oral disease. Having a damaged mouth with vulnerable teeth, dry mouth and sensitivity was explained by those elements. Despite some initial barriers, once being prescribed TMP by a dental professional, a three-fold process of change was initiated: starting a new oral hygiene routine, persevering daily, and experiencing reinforcing outcomes. This process led to a fundamental lifestyle change. Participants transitioned from having a damaged mouth with vulnerable teeth to having a comfortable mouth with strong teeth; at the same time participants felt empowered by this newly found status of being able to keep their teeth for life. Barriers and facilitators for incorporating TMP on daily oral hygiene routine were also identified. CONCLUSIONS: Participants valued having a comfortable mouth with strong teeth, which did not require repeated restorations. Seeing concrete results in their mouths and experiencing a more comfortable mouth boosted adherence to daily applications of TMP, which was maintained over time.
Assuntos
Cárie Dentária , Saúde Bucal , Caseínas , Cárie Dentária/prevenção & controle , Humanos , Higiene BucalRESUMO
AIM: T helper (Th)17 cells are implicated in the pathogenesis of periodontitis. This study investigated the effect of periodontal management on fifteen Th17-related cytokines in serum and saliva in periodontitis patients. MATERIALS AND METHODS: Periodontal parameters, serum and saliva were collected from 40 healthy controls and 54 periodontitis subjects before treatment, and 3-, 6- and 12-months post-treatment. Cytokine concentrations of IL-1ß, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α were determined by Luminex assay. RESULTS: IL-1ß, IL-6, sCD40L and TNF-α in serum, and IL-1ß, IL-6, IL-25 and IL-31 in saliva were significantly higher at baseline compared to health and decreased with treatment. In contrast, serum IL-31 was significantly lower at baseline compared to health and increased with treatment. In addition, salivary IL-10, IL-17A, IL-17F, IL-23, IL-33, IFN-γ and TNF-α also displayed treatment-related reduction. Correlation networks showed that cytokines in saliva displayed a higher number of correlations compared to serum in periodontitis. CONCLUSION: Treatment generally decreased cytokine concentrations except for serum IL-31 which showed a treatment-related increase. Serum cytokine concentrations may not be reflective of salivary cytokines. Saliva may be a better medium for cytokine detection compared to serum. Serum IL-31 and salivary IL-1ß, IL-6, IL-10 and TNF-α were significant predictors for mean probing depth and may be potential biomarkers of interest in the pathogenesis of periodontitis.
Assuntos
Citocinas/metabolismo , Periodontite/imunologia , Saliva/imunologia , Células Th17/imunologia , Adulto , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Bicyclic analogues of celogentin C have been synthesized in which the side chain-side chain cross-links are replaced by thioether bonds. Several of the simplified bicyclic peptides displayed potent inhibition of tubulin polymerization.
Assuntos
Peptídeos Cíclicos/farmacologia , Tubulina (Proteína)/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Peptídeos Cíclicos/química , Polimerização/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
Accumulated intra-lesion protein such as serum albumin has been speculated to impede remineralisation of carious enamel lesions. The aim of this study was to assess whether intra-lesion bovine serum albumin (BSA) affected subsequent remineralisation of enamel subsurface lesions. Confocal microscopy was used to confirm localisation of BSA in artificial enamel subsurface lesions and its subsequent degradation by a high pH sodium hypochlorite treatment. An in vitro remineralisation experiment tested the effect of intra-lesion BSA, and its degradation by sodium hypochlorite, on remineralisation of subsurface lesions by casein phosphopeptide stabilised amorphous calcium fluoride phosphate. In addition, lesions without BSA were pre-treated with one of 2 high pH solutions (sodium hypochlorite or sodium hydroxide) prior to remineralisation to test whether the high pH pre-treatment influenced remineralisation. Data were obtained on remineralisation using transverse microradiography and were analysed with a one-way ANOVA. Intra-lesion BSA had no significant effect on remineralisation compared with that of control lesions. Pre-treatment of BSA-containing lesions with sodium hypochlorite significantly increased remineralisation. The lesions without BSA that were pre-treated with either sodium hypochlorite or sodium hydroxide also showed the same level of remineralisation as the BSA-containing lesions pre-treated with sodium hypochlorite indicating that the increased remineralisation was pH related. Hence, it was concluded that intra-lesion BSA did not affect remineralisation of artificial enamel subsurface lesions in this model system and that a high pH pre-treatment enhanced remineralisation.
Assuntos
Esmalte Dentário , Cariostáticos , Humanos , Concentração de Íons de Hidrogênio , Soroalbumina Bovina , Remineralização DentáriaRESUMO
The identification and localization of outer membrane proteins (Omps) and lipoproteins in pathogenic treponemes such as T. denticola (periodontitis) and T. pallidum (syphilis) has been challenging. In this study, label-free quantitative proteomics using MaxQuant was applied to naturally produced outer membrane vesicles (OMVs) and cellular fractions to identify 1448 T. denticola proteins. Of these, 90 proteins were localized to the outer membrane (OM) comprising 59 lipoproteins, 25 ß-barrel proteins, and six other putative OM-associated proteins. Twenty-eight lipoproteins were localized to the inner membrane (IM), and 43 proteins were assigned to the periplasm. The signal cleavage regions of the OM and IM lipoprotein sequences were different and may reveal the signals for their differential localization. Proteins significantly enriched in OMVs included dentilisin, proteins containing leucine-rich repeats, and several lipoproteins containing FGE-sulfatase domains. Blue native PAGE analysis enabled the native size of the dentilisin complex and Msp to be determined and revealed that the abundant ß-barrel Omps TDE2508 and TDE1717 formed large complexes. In addition to the large number of integral Omps and potentially surface-located lipoproteins identified in T. denticola, many such proteins were also newly identified in T. pallidum through homology, generating new targets for vaccine development in both species.
Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Proteoma/análise , Treponema denticola , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lipoproteínas/análise , Lipoproteínas/química , Lipoproteínas/metabolismo , Peptídeo Hidrolases/análise , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Periplasma/química , Proteoma/química , Proteoma/metabolismo , Proteômica , Treponema denticola/química , Treponema denticola/citologiaRESUMO
Microbial infection has been shown to involve in oral carcinogenesis; however, the underlying mechanisms remain poorly understood. The present study aimed to characterize the growth of oral microorganisms as both monospecies and polymicrobial biofilms and determine the effects of their products on oral keratinocytes. Candida albicans (ALC3), Actinomyces naeslundii (AN) and Streptococcus mutans (SM) biofilms or a combination of these (TRI) were grown in flow-cell system for 24 h. The biofilms were subjected to fluorescent in situ hybridization using species-specific probes and analysed using confocal laser scanning microscopy. The effluent derived from each biofilm was collected and incubated with malignant (H357) and normal (OKF6) oral keratinocytes to assess extracellular matrix adhesion, epithelial-mesenchymal transition (EMT) and cytokines expression. Incubation of OKF6 with ALC3 and TRI effluent significantly decreased adhesion of the oral keratinocyte to collagen I, whereas incubation of H357 with similar effluent increased adhesion of the oral keratinocyte to laminin I, significantly when compared with incubation with artificial saliva containing serum-free medium (NE; P < 0.05). In OKF6, changes in E-cadherin and vimentin expression were not consistent with EMT although there was evidence of a mesenchymal to epithelial transition in malignant oral keratinocytes incubated with AN and SM effluent. A significant increase of pro-inflammatory cytokines expression, particularly interleukin (IL)-6 and IL-8, was observed when H357 was incubated with all biofilm effluents after 2- and 24-h incubation when compared with NE (P < 0.05). In conclusion, C.albicans, A.naeslundii and S.mutans form polymicrobial biofilms which differentially modulate malignant phenotype of oral keratinocytes.
Assuntos
Biofilmes , Neoplasias Bucais/patologia , Actinomyces/fisiologia , Candida albicans/fisiologia , Adesão Celular , Células Cultivadas , Citocinas/genética , Transição Epitelial-Mesenquimal , Matriz Extracelular/fisiologia , Genótipo , Humanos , Queratinócitos/fisiologia , Fenótipo , Streptococcus mutans/fisiologiaRESUMO
IL-36 cytokines are critical regulators of mucosal inflammation and homeostasis. IL-36γ regulates the expression of inflammatory cytokines and antimicrobial proteins by gingival epithelial cells (e.g. TIGK cells). Here, we show that IL-36γ also regulates the expression of matrix metalloproteinase 9 (MMP9) and neutrophil gelatinase-associated lipocalin (NGAL), important mediators of antimicrobial immunity and tissue homeostasis in mucosal epithelia. MMP9 and NGAL were not similarly induced by IL-17 or IL-22, thus indicating the importance of IL-36γ in the regulation of MMP9 and NGAL. Mechanistically, MMP9 and NGAL expression was demonstrated to be induced in an IRAK1- and NF-κB-dependent manner. Furthermore, signaling by p38 MAP kinase may enable their expression to be independently regulated by IL-36γ. The stronger IL-36γ-inducible expression of MMP9 and NGAL in terminally differentiating TIGK cells suggests that control of their expression is associated with the maturation of the gingival epithelium. Although MMP9 and NGAL expression in epithelial cells can also be induced by bacteria, their expression in TIGK cells was not induced by the periodontal pathogen Porphyromonas gingivalis, most likely due to antagonism by the gingipain proteinase virulence factors. This study advances our understanding of how IL-36γ may promote oral mucosal immunity and tissue homeostasis, and how this may be dysregulated by bacterial pathogens.
Assuntos
Células Epiteliais/metabolismo , Homeostase/fisiologia , Interleucina-1/metabolismo , Infecções por Bacteroidaceae , Células Cultivadas , Células Epiteliais/microbiologia , Gengiva/metabolismo , Gengiva/microbiologia , Humanos , Interleucina-17/metabolismo , Lipocalina-2/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiologia , Porphyromonas gingivalis/metabolismo , Fatores de Virulência/metabolismoRESUMO
Porphyromonas gingivalis is a keystone pathogen in chronic periodontitis. Its expression of gingipain proteases (Kgp and RgpA/B) is central to the stimulation of chronic inflammation. In this study, we investigated the inflammatory response of oral epithelial cells to P. gingivalis. The cells responded by upregulating the expression of the orphan chemokine CXCL14. The stimulation of CXCL14 expression was largely triggered by the gingipain proteases and was dependent on the host protease-activated receptor PAR-3. Significantly, CXCL14 expression was transcriptionally repressed in response to epidermal growth factor (EGF)-induced activation of the MEK-ERK1/2 pathway. P. gingivalis overcomes the repression of CXCL14 via the gingipain protease-mediated degradation of EGF. Therefore, P. gingivalis not only directly stimulates CXCL14 expression via PAR-3 but also promotes its expression by antagonising EGF signalling. In addition to chemotactic activity, some chemokines also have antimicrobial activities. CXCL14 was demonstrated to have bactericidal activity, against commensal oral streptococci associated with health. Notably though, P. gingivalis was not susceptible to killing by CXCL14, potentially because the gingipain proteases can degrade CXCL14. This suggests that the stimulation of dysregulated CXCL14 expression by P. gingivalis may help promote dysbiosis and the development of chronic periodontitis.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Quimiocinas CXC/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Porphyromonas gingivalis/crescimento & desenvolvimento , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular , Células Epiteliais/imunologia , Regulação da Expressão Gênica , HumanosRESUMO
Porphyromonas gingivalis is an anaerobic, Gram-negative oral pathogen associated with chronic periodontitis. P. gingivalis has an obligate requirement for heme, which it obtains from the host. Heme availability has been linked to disease initiation and progression. In this study we used continuous culture of the bacterium to determine the effect of heme limitation and excess on the P. gingivalis proteome. Four biological replicates of whole cell lysate (WCL) and outer membrane vesicle (OMV) samples were digested with trypsin and analyzed by tandem mass spectrometry and MaxQuant label-free quantification. In total, 1211 proteins were quantified, with 108 and 49 proteins significantly changing in abundance more than 1.5-fold ( p < 0.05) in the WCLs and OMVs, respectively. The proteins most upregulated in response to heme limitation were those involved in binding and transporting heme, whereas the four proteins most upregulated under the heme-excess condition constitute a putative heme efflux system. In general, the protein abundance ratios obtained for OMVs and WCLs agreed, indicating that changes to the OM protein composition are passed onto OMVs; however, 16 proteins were preferentially packaged into OMVs under one condition more than the other. In particular, moonlighting cytoplasmic proteins were preferentially associated with OMVs under heme excess.