Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 765, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932679

RESUMO

BACKGROUND: Neutropenia is the most important cause of life-threatening invasive fungal infections (IFIs). Here, we studied the frequency and antifungal susceptibility profiles of Candida species that colonized or caused infections among neutropenic patients with solid or hematological malignancies. METHODS: A total of 362 clinical samples were collected from 138 patients. After initial isolation using a mix of mycological methods, isolates were screened using chromogenic culture media. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was applied for molecular identification. Positive or suspected cases were confirmed using the reference method of sequencing. Antifungal susceptibility testing for voriconazole and caspofungin was carried out using the microbroth dilution method. An in-silico assay was applied for phylogenetic analysis. RESULTS: Thirty-four Candida strains were isolated. C. albicans (47.06%) and C. glabrata (29.41%) were the most frequent strains. Antifungal treatment reduced the chance of Candida colonization by almost 76% in neutropenic patients (OR: 1.759; 95% CI: 1.349 to 2.390; p value: 0.000). An unusual and non-resistant strain, C. lambica, was reported from the bloodstream of a 56-year-old man with hematologic malignancy (HM). Eight isolates were non-susceptible, and one isolate was resistant to voriconazole. Also, four isolates were non-susceptible to caspofungin. CONCLUSION: We can conclude that there is a cause-and-effect relationship between neutropenia, HM background, and Candida species separated from neutropenic patients, which can lead to possible infections. Further and repetitive studies are recommended using different molecular methods for better prediction and management of fungal infections in neutropenic patients.


Assuntos
Antifúngicos , Neutropenia , Humanos , Masculino , Pessoa de Meia-Idade , Antifúngicos/farmacologia , Candida , Candida albicans , Candida glabrata , Caspofungina , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Neutropenia/tratamento farmacológico , Filogenia , Voriconazol
2.
Crit Rev Food Sci Nutr ; : 1-10, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250549

RESUMO

Probiotics and postbiotics mechanisms of action and applications in early-onset colorectal cancer (EOCRC) prevention and treatment have significant importance but are a matter of debate and controversy. Therefore, in this review, we aimed to define the probiotics concept, advantages and limitations in comparison to postbiotics, and proposed mechanisms of anti-tumor action in EOCRC prevention and treatment of postbiotics. Biotics (probiotics, prebiotics, and postbiotics) could confer the health benefit by affecting the host gut microbiota directly and indirectly. The main mechanisms of action of probiotics in exerting anticancer features include immune system regulation, inhibition of cancer cell propagation, gut dysbiosis restoration, anticancer agents' production, gut barrier function renovation, and cancer-promoting agents' reduction. Postbiotics are suggested to have different mechanisms of action to restore eubiosis against EOCRC, including modulation of gut microbiota composition, gut microbial metabolites regulation, and intestinal barrier function improvement via different features such as immunomodulatory, anti-inflammatory, antioxidant, and anti-proliferative properties. A better understanding of postbiotics challenges and mechanism of action in therapeutic applications will allow us to sketch accurate trials in order to use postbiotics as bio-therapeutics in EOCRC.

3.
Anaerobe ; 76: 102606, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738484

RESUMO

Carbapenems are an applicable subclass of ß-lactam drugs in the antibiotic therapy of anaerobic infections, especially for poly-microbial cases, due to their broad antimicrobial spectrum on aerobic and anaerobic bacteria. Bacteroides fragilis is the most commonly recovered anaerobic bacteria in the clinical laboratories from mono- and poly-microbial infections. B. fragilis is relatively non-susceptible to different antibiotics, including ß-lactams, tetracyclines, fluoroquinolones, and macrolides. Carbapenems are among the most effective drugs against B. fragilis strains with high-level resistance to different antibiotics. Increased antibiotic resistance of B. fragilis strains has been reported following the overuse of an antimicrobial agent. Earlier contact with carbapenems is linked with increased resistance to them that limits the options for treatment of B. fragilis caused infections, especially in cases caused by multidrug-resistant strains. Several molecular mechanisms of resistance to carbapenems have been described for different carbapenem-resistant bacteria. Understanding the mechanisms of resistance to antimicrobial agents is necessary for selecting alternative antimicrobial agents and the application of control strategies. In the present study, we reviewed the mechanisms contributing to resistance to carbapenems in B. fragilis strains.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Infecções por Bacteroides , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Bactérias Anaeróbias , Infecções por Bacteroides/tratamento farmacológico , Infecções por Bacteroides/microbiologia , Bacteroides fragilis/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamases/farmacologia
4.
Can J Infect Dis Med Microbiol ; 2022: 6086979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452942

RESUMO

Carbapenemase-resistant Klebsiella pneumoniae (CRKP) is a genuine burden for physicians and researchers. We aimed at carbapenemase resistance and its relation with capsular serotyping in K. pneumoniae and studied some clinical determinants, which may influence the clinical infections. Initially, 61 K. pneumoniae isolates obtained from various clinical specimens were confirmed at the molecular level and then antimicrobial susceptibility test was performed followed by capsular serotyping performed by multiplex PCR. All isolates were subjected to the detection of carbapenemase genes including bla KPC, bla NDM-1, bla OXA-48, bla VIM, and bla IMP. Clinical and demographic data of all patients were reviewed including age, gender, underlying diseases, and the treatment obtained. Multidrug-resistance was a predominant feature in 77% K. pneumoniae strains. Presence of extended-spectrum beta-lactamase was detected phenotypically in 59% K. pneumoniae strains. Carbapenem resistance was noticed phenotypically in 24.6% isolates. bla OXA-48 and bla NDM-1 were the most frequent carbapenemase genes. bla NDM-1 positive isolates correlated with gentamicin, amikacin, imipenem, and meropenem resistance (p < 0.05). The nosocomial isolates mostly harbored bla OXA-48 gene (p < 0.02). Amongst all the K. pneumoniae isolates, 59% isolates could be typed and serotype K54 had the highest prevalence followed by K20 and K5. Correlation between the carbapenemase genes, serotype and type of infection showed that bla OXA-48 positive strains had a significant association with K20 serotype and urinary tract infections (p=0.2) while, K20 serotype and bla KPC positive strains were significantly associated with wound infections (K20, p=0.3 and bla KPC, and p=0.4). Mucoid phenotype was not found related to presence of specific carbapenemase genes or serotypes except serotype K20 (p < 0.001). Patients with monotherapy had treatment failure in comparison to the combination therapy for bla KPC-associated infections. In conclusion, the present investigation exhibited the significant association between K20 serotype with bla OXA-48. The predominance of K54 reveals the possibility of endemicity in our hospital setting. K. pneumoniae isolated from wound specimens significantly harbors K20 serotype and bla KPC gene. Comprehensive clinical information and the distribution of antibiotic resistance genes, and serotypes may play important roles in the treatment process.

5.
Can J Infect Dis Med Microbiol ; 2022: 9916255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345550

RESUMO

Different clones of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) are dominating geographically. One of the significant, hypervirulent, CA-MRSA and a significant health concern clones is USA3000, found worldwide regionally with varying frequencies. The clone harbors several mobile genetic elements (MGEs) including, arginine catabolic mobile element (ACME) and copper and mercury resistance genes (COMER), accomplished by horizontal gene transfer from S. epidermidis. Evidence suggests that ACME and COMER have a more prominent role in enhancing biofilm capacity and ultimately persistent infections. This review highlights the comprehensive view on ACME and COMER structure, their distribution, and the mechanism of action along with pathogenetic features of USA3000 encompassing their role in biofilm formation, adhesion, quorum sensing, resistance to antibiotics, chemotaxis, and nutrient uptake. We also provided an insight into the role of ACME and COMER genes in the survival of bacterium. Our results shed light on the emergence of two independent clones possessing ACME (North American) and COMER (South American) elements which later disseminated to other regions. ACME and COMER both are adjacent to staphylococcal cassette chromosome mec type IV (SCCmec IV). The acquisition of mecA, followed by COMER or ACME has been shown as a significant factor in the rise and fall of MRSA strains and their complex ability to adapt to hostile environments. The presence of ACME increases fitness, thereby allowing bacteria to colonize the skin and mucous membrane while COMER contributes to genetic stability by knocking over the copper-mediated killing in macrophages. Evidence suggests that ACME and COMER have a more prominent role in enhancing biofilm capacity and ultimately persistent infections. Interestingly, ACME strains have been shown to possess the ability to counteract skin acidity, thereby allowing increased skin colonization. A profound understanding of MGEs in S. aureus plays an important role in the prevention of epidemic clones.

6.
Microb Pathog ; 157: 105003, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34087388

RESUMO

BACKGROUND: Enterococcus faecalis is a significant cause of nosocomial infections and other diseases, including endocarditis, bacteremia, and urinary tract infections. This microorganism forms biofilms to overcome difficult environmental conditions, such as lack of oxygen, lack of water, and the presence of antimicrobials. These biofilms make diseases difficult by changing their proteome contents, protecting the bacterium, and increasing their pathogenicity. This study aimed to evaluate gentamicin's effect on proteome changes and biofilm formation in E. faecalis. METHOD: Twenty-five clinical isolates and one standard isolate were selected for the experiments. A label-free/gel-free proteomic and microtiter plate techniques were used to study proteome changes and biofilm formation, respectively. RESULTS: Gentamicin significantly increased the biofilm formation in 62% of isolates and the rest of the isolates; no significant change was observed. The abundance of lactate utilization protein C, ribosomal RNA small subunit methyltransferase H, and protein translocase subunit SecA were increased. However, the abundances of proteins effective in cell division and metabolism, such as replication initiation protein and segregation and condensation protein A, were decreased. CONCLUSION: The present study's findings exhibited that antibiotics might have adverse effects on treatment and increase microorganisms' pathogenicity. It was observed in gentamicin as induction of biofilm formation through different mechanisms, particularly changes in the expression of specific proteins in E. faecalis.


Assuntos
Enterococcus faecalis , Infecções por Bactérias Gram-Positivas , Biofilmes , Gentamicinas/farmacologia , Humanos , Proteoma , Proteômica
7.
Microb Pathog ; 154: 104860, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33771631

RESUMO

BACKGROUND: Staphylococcus aureus (S. aureus) is a bacterial pathogen can cause a wide range of nosocomial infections. Nasal colonization by S.aureus plays important role both in the epidemiology and pathogenesis of infection. OBJECTIVES: The purpose of this study was to investigate the association of clinical isolates and nasal colonizers of S. aureus in the same patients by molecular methods, and their antibiotic susceptibility pattern. METHODS: A total of 181 S. aureus isolates were collected from 100 patients admitted that including 100 clinical isolates and 81 nasal swabs from the same patients (19 cases were found as noncarriers). Superantigens and adhesion genes were identified by PCR. Molecular typing of the isolates was performed by repetitive element polymerase chain reaction (Rep-PCR). Antimicrobial susceptibility pattern of the isolates was conducted by disk diffusion. MIC of the isolates to vancomycin was determined by microbroth dilution. The ability of S. aureus isolates to form biofilm was determined by microtiter plate assay. RESULTS: The most frequent adhesion gene in both clinical isolates and nasal colonizer was clfA with 93% and 76%, respectively. Staphylococcal enterotoxin A (SEA) was the most commonly superantigen (68%) in both nasal colonizers (71.6%) and clinical isolates (65%). The highest resistance rate was to erythromycin (45.3%) with 36% and 56.8% in clinical and nasal colonizer isolates, respectively. All S. aureus isolates were susceptible to linezolid and vancomycin. Multiple drug resistance (MDR) was detected in 36% (n = 65) of the isolates. Biofilm formation was identified in 160 (88.4%) isolates with 87% and 90% in clinical isolates and nasal colonizers, respectively. Repetitive element polymerase chain reaction (Rep-PCR) typing divided 181 S. aureus isolates into six clusters. Twelve isolates from clinical isolates and nasal carriers were closely related. CONCLUSION: There is a high concordance rate between colonizing and clinical isolates of S. aureus in terms of adhesion factors and superantigen genes. It is suggested that nasal decolonization could be effective in the preventing of S. aureus infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Eritromicina , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética , Superantígenos/genética
8.
Ann Clin Microbiol Antimicrob ; 20(1): 49, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321002

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are one of the factors which can contribute to limiting the development and evolution of antibiotic resistance in bacteria. There are three genomic loci of CRISPR-Cas in Enterococcus faecalis. In this study, we aimed to assess correlation of the CRISPR-Cas system distribution with the acquisition of antibiotic resistance among E. faecalis isolates. A total of 151 isolates of E. faecalis were collected from urinary tract infections (UTI) and dental-root canal (DRC). All isolates were screened for phenotypic antibiotic resistance. In addition, antibiotic resistance genes and CRISPR loci were screened by using polymerase chain reaction. Genomic background of the isolates was identified by random amplified polymorphic DNA (RAPD)-PCR. The number of multidrug-resistant E. faecalis strains were higher in UTI isolates than in DRC isolates. RAPD-PCR confirmed that genomic background was diverse in UTI and DRC isolates used in this study. CRISPR loci were highly accumulated in gentamycin-, teicoplanin-, erythromycin-, and tetracycline-susceptible strains. In concordance with drug susceptibility, smaller number of CRISPR loci were identified in vanA, tetM, ermB, aac6'-aph(2"), aadE, and ant(6) positive strains. These data indicate a negative correlation between CRISPR-cas loci and antibiotic resistance, as well as, carriage of antibiotic resistant genes in both of UTI and DRC isolates.


Assuntos
Antibacterianos/farmacologia , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Proteínas de Bactérias/genética , Enterococcus faecalis/isolamento & purificação , Genótipo , Gentamicinas , Humanos , Infecções Urinárias
9.
Microb Pathog ; 139: 103907, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31811888

RESUMO

Enterococcus faecalis is one of the important causes of nosocomial infections. Nowadays, increasing prevalence of antibiotic-resistant bacteria and slow progress in recognizing new antimicrobial agents has limited the efficiency of conventional antibiotics, which cause to find novel strategies to overcome bacteria. Therefore, in this study, we aimed to assess the role of efaA gene in the biofilm formation and the role of ftsZ gene in the controlling of bacterial growth by the anti-sense PNAs(Peptide Nucleic Acid).E. faecalis ATCC® 29212™was used for the study of PNAs designed to targeting the start codon section of the ftsZ andefaA genes. PNA attachment to RNA was confirmed by blotting. Electroporation technique was used for the intracellular transfer of anti-ftsZ PNAs. The spot-plating method was used to the assessment of alteration in bacterial growth. Biofilm formation assay and real-time PCR were used for detection of biofilm inhibitory effect of cell penetrating peptide (CPP) conjugated to anti-efaA PNAs.ByftsZ PNAs treatment, no growth was seen from the strain in agar by a spot plating method and the inhibition zone of anti-ftsZ PNAs was not seen. PNAs against the efaA gene decreased by 95% the expression of the efaA gene and biofilm formation. In addition, the(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) MTT assay showed no toxicity on MCF7 cells for both of anti-ftsZand anti-efaA PNAs.This study used new genetic and molecular tools to inhibit pathogenicity and infection by E. faecalis. In this study, we suggested that efaA gene plays a critical role in the biofilm formation and anti-efaA PNAs could decrease the formation of biofilm, as well as, anti-ftsZ PNAs could eliminate bacterial growth.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Biofilmes , Proteínas do Citoesqueleto/genética , Enterococcus faecalis/genética , Ácidos Nucleicos Peptídicos/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Regulação Bacteriana da Expressão Gênica
10.
Microb Pathog ; 135: 103646, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31344478

RESUMO

Escherichia coli is a gram-negative bacterium and it causes a variety of diseases in humans. It causes a wide range of clinical infections in humans; urinary tract infections is the most prevalent infection caused by uropathogenic Escherichia coli. In recent years, the observation of antibiotic-resistant genes such as resistance to colistin, makes the Escherichia coli resistant to antibiotics like colistin (polymyxin E), because of that the use of new therapies like peptide nucleic acid (PNA) has attracted the consideration of scientists. The aim of this study is the assessment of the inhibitory role of PNA against mcr-1 gene and reduction of mcr-1 gene expression and MIC in colistin resistant E. coli by PNA. NCBI database was used to design PNA. Our study was carried out on E. coli KP81 bacteria containing the mcr-1 gene. Microbroth dilution (MIC) method was used to survey phenotypic sensitivity and determine the sensitivity of the bacteria to the colistin antibiotic. E. coli KP81 isolates were further investigated by polymerase chain reaction to assess the presence of mcr-1 genes and target genes were quantified by real-time PCR assay using specific primers. The MIC result after treatment with specific PNA showed that the resistance to colistin reduced about three fold and the resistance level dropped from 32 µg/ml to 4 µg/ml. The expression analysis of mcr-1 gene in E. coli KP81 isolate indicates the PNA, 95% reduced the expression of the mcr-1 gene. Our observations showed that by inhibiting the expression of mcr-1, sensitivity to colistin can be defeated. Using higher concentrations of PNA and an in vivo study can reveal more clinical application of this method.


Assuntos
Colistina/farmacologia , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Ácidos Nucleicos Peptídicos/farmacologia , Plasmídeos/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana
11.
Indian J Med Res ; 150(1): 87-91, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31571634

RESUMO

Background & objectives: Diarrhoeagenic Escherichia coli strains are common agents of diarrhoea particularly in developing countries. Food products of animal origin are considered as common carriers of E. coli. This study was undertaken to identify enterotoxigenic Escherichia coli (ETEC) and enteropathogenic E. coli (EPEC) pathotypes in animal-source foods (ASF). Methods: A total of 222 ASF samples were investigated. Based on the culture and biochemical tests, 109 E. coli isolates were identified. Duplex-polymerase chain reaction assay was used to detect ETEC and EPEC. The target genes selected for each category were the lt and st for the ETEC, and eae and bfp for the EPEC isolates. Results: The occurrence of E. coli in dairy and meat products was 45 and 52.5 per cent, respectively. Among the E. coli isolates, two ETEC, one typical EPEC and three atypical EPEC were detected in meat samples, whereas only one typical EPEC and one atypical EPEC were detected in dairy samples. Interpretation & conclusions: Our results showed presence of ETEC and EPEC strains in ASFs. The milk without pasteurization and traditional dairy products produced in unhygienic conditions are most likely the main sources of E. coli pathotypes and other zoonotic pathogens and thus can be considered a potential hazard to the health of the community.


Assuntos
Diarreia/microbiologia , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enterotoxigênica/isolamento & purificação , Microbiologia de Alimentos , Animais , Bovinos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Diarreia/diagnóstico , Diarreia/genética , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Enterotoxigênica/patogenicidade , Fezes/microbiologia , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Irã (Geográfico)/epidemiologia , Leite/microbiologia , Reação em Cadeia da Polimerase , Sorotipagem
12.
Cell Mol Biol (Noisy-le-grand) ; 64(13): 1-5, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30403587

RESUMO

Enterococcus faecalis is an important opportunistic infectious agent involving the oral cavity and endodontics. The aim of this study was to evaluate the expression ratio of efaA gene in biofilm producer E. faecalis before and after receiving acidic and alkali shocks. One hundred E. faecalis isolates were gathered from 170 infectious root canals. After analysis of biofilm formation by the Microtiterplate method, the presence of efaA gene was examined by PCR and its expression was evaluated by Real-time PCR, one before applying any stressed to isolates and another by applying acidic and alkali shock. Chi-square method was used for statistical analysis. Eighty-two percent of samples had efaA gene. Evaluation of biofilm formation, 49% of the isolates were strong biofilm producer, 42% moderate and 10 % of them had no biofilm. 59% overexpression of efaA gene was observed in biofilm producer isolates, while there were no significant changes in samples with acidic stress and decreased expression after alkali shock. Findings of the present study, indicates importance of efaA gene in biofilm formation and pathogenesis of E. faecalis. Acid had no effect of expression of this gene but alkali reduced expression of this gene in a significant level. These results indicate the importance of efaA and acidic conditions in biofilm production by E. faecalis.


Assuntos
Ácidos/farmacologia , Álcalis/farmacologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Cavidade Pulpar/microbiologia , Enterococcus faecalis/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Infecções por Bactérias Gram-Positivas/microbiologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/isolamento & purificação , Humanos
13.
Diagn Microbiol Infect Dis ; 109(2): 116229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507962

RESUMO

Some strains of Escherichia coli are known to be involved in the pathogenesis of colorectal cancer (CRC). The aim of current study was to compare the general characteristics of the E. coli from CRC patients and healthy participants. A total of 96 biopsy samples from 48 CRC patients and 48 healthy participants, were studied. The clonality of the E. coli isolates was analyzed by Enterobacterial repetitive intergenic consensus-based PCR (ERIC-PCR) method. The strains were tested by PCR to determine the prevalence of different virulence factors. According to the results of ERIC-PCR analysis, (from the 860 E. coli isolates) 60 strains from CRC patients and 41 strains from healthy controls were identified. Interestingly, the majority of the strains of both groups were in the same cluster. Enteropathogenic E. coli (EPEC) was detected significantly more often in CRC patients (21.6 %) than in healthy participants (2.4 %) (p < 0.05). The Enteroaggregative E. coli (EAEC) was found in 18.33 % of the strains of CRC patients. However, other pathotypes were not found in the E. coli strains of both groups. Furthermore, all the studied genes encoding for virulence factors seemed to be more prevalent in the strains belonging to CRC patients. Among the virulence genes, the statistical difference regarding the frequency of fuyA, chuA, vat, papC, hlyA and cnf1 genes was found significant (p < 0.05). In conclusion, E. coli strains that carry extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC) multiple virulence factors colonize the gut mucosa of CRC patients.


Assuntos
Neoplasias Colorretais , Infecções por Escherichia coli , Escherichia coli , Mucosa Intestinal , Fatores de Virulência , Humanos , Neoplasias Colorretais/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Fatores de Virulência/genética , Idoso , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Infecções por Escherichia coli/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Adulto , Idoso de 80 Anos ou mais , Reação em Cadeia da Polimerase , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/classificação
14.
J Glob Antimicrob Resist ; 36: 151-159, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154746

RESUMO

OBJECTIVES: Plasmid genes, termed mobile colistin resistance-1 (mcr-1) and mobile colistin resistance-2 (mcr-2), are associated with resistance to colistin in Escherichia coli (E. coli). These mcr genes result in a range of protein modifications contributing to colistin resistance. This study aims to discern the proteomic characteristics of E. coli-carrying mcr-1 and mcr-2 genes. Furthermore, it evaluates the expression levels of various proteins under different conditions (with and without colistin). METHODS: Plasmid extraction was performed using an alkaline lysis-based plasmid extraction kit, whereas polymerase chain reaction was used to detect the presence of mcr-1 and mcr-2 plasmids. The E. coli DH5α strain served as the competent cell for accepting and transforming mcr-1 and mcr-2 plasmids. We assessed proteomic alterations in the E. coli DH5α strain both with and without colistin in the growth medium. Proteomic data were analysed using mass spectrometry. RESULTS: The findings revealed significant protein changes in the E. coli DH5α strain following cloning of mcr-1 and mcr-2 plasmids. Of the 20 proteins in the DH5α strain, expression in 8 was suppressed following transformation. In the presence of colistin in the culture medium, 39 new proteins were expressed following transformation with mcr-1 and mcr-2 plasmids. The proteins with altered expression play various roles. CONCLUSION: The results of this study highlight numerous protein alterations in E. coli resulting from mcr-1 and mcr-2-mediated resistance to colistin. This understanding can shed light on the resistance mechanism. Additionally, the proteomic variations observed in the presence and absence of colistin might indicate potential adverse effects of indiscriminate antibiotic exposure on treatment efficacy and heightened pathogenicity of microorganisms.


Assuntos
Colistina , Proteínas de Escherichia coli , Colistina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma , Proteômica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Clonagem Molecular
15.
Curr Pharm Biotechnol ; 24(8): 1018-1034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36200153

RESUMO

Colorectal cancer is a type of gut cancer originating either from the rectum or colon. Genetic and environmental factors, such as the gut microbiome, play pivotal roles in colorectal cancer incidence rates. Therefore, we aimed to review the risk factors of CRC comprising gut bacteriomes and their intra-interactions with each other in the context of CRC development. Gut microbiota alteration, especially bacteriome alteration as the dominant player, seems to be the common feature amongst all risk factors. Although it is not quite obvious whether these alterations are the causes or the consequences of the tumorigenesis risk factors, they are common and almost universal among CRC-affected individuals. In addition, bacterial genotoxicity, biofilm formation, oxidative stress, bacterial metabolome, and dysbiosis are assessed in CRC development. The present study suggests that gut microbial alterations could be the key intermediate, as a cause or a consequence, between most risk factors of CRC and the way they promote or contribute to CRC development.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Carcinogênese , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Fatores de Risco
16.
Heliyon ; 9(7): e17880, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539246

RESUMO

Sepsis is a complex clinical disorder with heterogeneous etiological factors. Given its high mortality rate, it is considered a global health issue. Recently, the link between gut microbiota and their metabolites, especially short-chain fatty acids, in the pathophysiology of sepsis has been reported. However, there are few findings to confirm this relationship. This study aimed to evaluate some key gut microbiota members, pathogenic bacteria, and short-chain fatty acids in non-ICU patients with sepsis caused by bacteremia compared to a control group. In this case-control study, 45 stool samples from patients with sepsis and 15 healthy persons were collected from October 2021 to August 2022 in Tabriz, Iran. The position of some gut microbiota members and the main short-chain fatty acids concentration were assessed in the two groups by the Q-PCR and the high-performance liquid chromatography system. Faecalibacterium prausnitzii and Bifidobacterium sp. As bacterial with protective features in non-ICU patients with sepsis decreased significantly. Moreover, the concentrations of acetic acid and propionic acid significantly decreased in this group compared to the healthy volunteers. In contrast, the pathogenic bacteria members such as Enterobacteriaceae and Bacteroides sp. Increased significantly in the patients compared to the healthy individuals. The concentration of butyric acid decreased in the patients, but this change was not significant in the two groups. Protective and immune functions of F. prausnitzii and Bifidobacterium sp., as well as acetate and propionate, are evident. In this investigation, this profile was significantly reduced in non-ICU patients with sepsis compared to the control group.

17.
Egypt J Med Hum Genet ; 24(1): 3, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519898

RESUMO

Background: Tuberculosis (TB) is considered one of the most infectious diseases in the world. In this study, we intended to examine the epidemiology of tuberculosis by MIRU-VNTR to define the changes that occur in the transmission of tuberculosis in the region during the COVID-19 era. A total of 120 Mycobacterium tuberculosis isolates were collected from sputum samples of patients referred to East Azerbaijan Center TB from December 2020 to August 2021. Demographic information such as age, sex, place of birth, previous TB history, and relevant medical data was collected. The proportion method was performed for drug susceptibility testing, and the PCR-based MIRU-VNTR method was applied to identify molecular epidemiology relationships. Results: The isolates were collected from 78 male (65%) and 39 female (32.5%) Iranian patients and 3 (2.5%) Azerbaijani patients. Ninety-three distinct patterns were identified including 15 clustered patterns and 36 unique patterns. The largest cluster was composed of seven isolates. Furthermore, one cluster with 5 members, four clusters with 3 members, and nine clusters with 2 members. In MIRU-VNTR typing, 75 clusters belonged to the Tabriz region and just 3 to the Republic of Azerbaijan. All isolates were sensitive to rifampin, isoniazid, and ethambutol. Conclusions: Results of the current study showed COVID-19 pandemic had a direct effect on the transmission and diagnosis of tuberculosis. Less diagnosis and less clustering can indicate public controls and hygiene, and the use of masks had a direct effect on the transmission and diagnosis of tuberculosis. However, misidentification and less focus on other respiratory infections are expected during the pandemic. Studies on the co-infection of COVID-19 and tuberculosis and the role of mask and sanitization against TB are strongly recommended.

18.
Curr Pharm Biotechnol ; 23(13): 1569-1580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35255786

RESUMO

Colorectal cancer (CRC) is the third most prevalent malignant neoplasm in the world. CRC is influenced by both environmental and genetic factors. Through toxin-mediated DNA damage and the promotion of persistent dysregulated inflammation, the gut microbiota plays a crucial role in the development of CRC. In this review, we discussed the correlation between the bacterial microbiota and CRC carcinogenesis as well as the mechanism by which Streptococcus bovis/gallolyticus, Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia coli can cause CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Bactérias/genética , Carcinogênese/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Detecção Precoce de Câncer , Escherichia coli , Humanos
19.
Ethiop J Health Sci ; 32(4): 799-808, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35950059

RESUMO

Background: Enterococci are naturally found in the gastrointestinal (GI) tract of animals and humans, as well as animal-derived foods and vegetables. We here aimed to determine the prevalence, antibiotic resistance, and virulence determinants of E. faecium and E. faecalis in traditional cheese in the North-west of Iran. Materials and Methods: Fifty specimens of popular traditional cheese from dairy stores of Urmia and Tabriz, Iran, were collected. Identification of the genus and species of enterococci was done using molecular and phenotypic techniques. Results: Forty-eight (96 %) of 50 traditional cheese samples were harboring Enterococcus spp, including Enterococcus faecalis (n= 40; 83.33 %) and E. faecium (n= 8; 16.67 %). The prevalence of enterococci ranged from 1.1×105 to 9.7×104 CFU/g, and 1.1×103 to 9.8×103 CFU/g in Urmia and Tabriz samples, respectively. Rifampicin resistance (n= 38; 79.2 %) was the most common pattern observed in the susceptibility test, which was followed by quinupristin/dalfopristin (n= 33; 68.75 %). Among E. faecalis isolates, cpd (100 %), ace (92.5 %) and gelE (87.5 %), and among E. faecium isolates, gelE (100 %) and asa1 (75 %) were found to have the most common virulence genes. Conclusion: E. faecalis was the predominant species, displaying more virulence determinants. It also had high antibiotic resistance, as compared to E. faecium. The enterococci identified here commonly expressed virulence and antibiotic resistance determinants. So, it is required to improve the maintenance and production quality of traditional cheese to avoid enterococci contamination.


Assuntos
Queijo , Infecções por Bactérias Gram-Positivas , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Enterococcus/genética , Enterococcus faecalis/genética , Humanos , Testes de Sensibilidade Microbiana , Prevalência , Virulência , Fatores de Virulência/genética
20.
Curr Pharm Biotechnol ; 23(10): 1257-1268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34514986

RESUMO

Colorectal cancer (CRC) is one of the deadliest cancers in the world. Specific strains of intestinal Escherichia coli (E. coli) may influence the initiation and development of CRC by exploiting virulence factors and inflammatory pathways. Mucosa-associated E. coli strains are more prevalent in CRC biopsies in comparison to healthy controls. Moreover, these strains can survive and replicate within macrophages and induce a pro-inflammatory response. Chronic exposure to inflammatory mediators can lead to increased cell proliferation and cancer. Production of colobactin toxin by the majority of mucosa-associated E. coli isolated from CRC patients is another notable finding. Colibactin-producing E. coli strains, in particular, induce double-strand DNA breaks, stop the cell cycle, involve in chromosomal rearrangements of mammalian cells and are implicated in carcinogenic effects in animal models. Moreover, some enteropathogenic E. coli (EPEC) strains are able to survive and replicate in colon cells as chronic intracellular pathogens and may promote susceptibility to CRC by downregulation of DNA Mismatch Repair (MMR) proteins. In this review, we discuss current evidence and focus on the mechanisms by which E. coli can influence the development of CRC.


Assuntos
Neoplasias Colorretais , Infecções por Escherichia coli , Animais , Neoplasias Colorretais/genética , Regulação para Baixo , Escherichia coli/metabolismo , Humanos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA