Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(2): 396-409.e26, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32220308

RESUMO

Decades after the motor homunculus was first proposed, it is still unknown how different body parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. Using multi-unit recordings, we studied how face, head, arm, and leg movements are represented in the hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to traditional expectations, we found strong representation of all movements and a partially "compositional" neural code that linked together all four limbs. The code consisted of (1) a limb-coding component representing the limb to be moved and (2) a movement-coding component where analogous movements from each limb (e.g., hand grasp and toe curl) were represented similarly. Compositional coding might facilitate skill transfer across limbs, and it provides a useful framework for thinking about how the motor system constructs movement. Finally, we leveraged these results to create a whole-body intracortical brain-computer interface that spreads targets across all limbs.


Assuntos
Lobo Frontal/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Adulto , Mapeamento Encefálico , Lobo Frontal/anatomia & histologia , Corpo Humano , Humanos , Córtex Motor/metabolismo , Movimento/fisiologia
2.
Int J Neurosci ; 131(10): 953-961, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32364414

RESUMO

PURPOSE/AIM: To compare complications, readmissions, revisions, and payments between navigated and conventional pedicle screw fixation for treatment of spine deformity. METHODS: The Thomson Reuters MarketScan national longitudinal database was used to identify patients undergoing osteotomy, posterior instrumentation, and fusion for treatment of spinal deformity with or without image-guided navigation between 2007-2016. Conventional and navigated groups were propensity-matched (1:1) to normalize differences between demographics, comorbidities, and surgical characteristics. Clinical outcomes and charges were compared between matched groups using bivariate analyses. RESULTS: A total of 4,604 patients were identified as having undergone deformity correction, of which 286 (6.2%) were navigated. Propensity-matching resulted in a total of 572 well-matched patients for subsequent analyses, of which half were navigated. Rate of mechanical instrumentation-related complications was found to be significantly lower for navigated procedures (p = 0.0371). Navigation was also associated with lower rates of 90-day unplanned readmissions (p = 0.0295), as well as 30- and 90-day postoperative revisions (30-day: p = 0.0304, 90-day: p = 0.0059). Hospital, physician, and total payments favored the conventional group for initial admission (p = 0.0481, 0.0001, 0.0019, respectively); however, when taking into account costs of readmissions, hospital payments became insignificantly different between the two groups. CONCLUSIONS: Procedures involving image-guided navigation resulted in decreased instrumentation-related complications, unplanned readmissions, and postoperative revisions, highlighting its potential utility for the treatment of spine deformity. Future advances in navigation technologies and methodologies can continue to improve clinical outcomes, decrease costs, and facilitate widespread adoption of navigation for deformity correction.


Assuntos
Procedimentos Ortopédicos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Readmissão do Paciente , Parafusos Pediculares , Complicações Pós-Operatórias , Reoperação , Curvaturas da Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Ortopédicos/estatística & dados numéricos , Osteotomia/estatística & dados numéricos , Readmissão do Paciente/estatística & dados numéricos , Parafusos Pediculares/estatística & dados numéricos , Complicações Pós-Operatórias/epidemiologia , Reoperação/estatística & dados numéricos , Estudos Retrospectivos , Fusão Vertebral/estatística & dados numéricos , Cirurgia Assistida por Computador/estatística & dados numéricos , Adulto Jovem
3.
J Neuroradiol ; 48(2): 104-111, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31323305

RESUMO

PURPOSE: To characterize the demographics, clinical and imaging findings, and outcomes of traumatic brain injury (TBI) patients in each of NeuroImaging Radiological Interpretation System (NIRIS) categories. MATERIAL AND METHODS: We considered all consecutive patients transported to Stanford Hospital's emergency department by ambulance or helicopter between November 2015 and April 2017. We retained adult patients (> 18 years old) for whom a trauma alert was triggered and who underwent a non-contrast head computer tomography (CT) because of suspected TBI. We reviewed the non-contrast CT scans in these patients for the NIH TBI common data elements (CDEs). We recorded, then assessed differences in terms of demographics, clinical characteristics, imaging CDEs, and outcomes in patients from the different NIRIS categories. RESULTS: In all, 1152 patients were included in this study. Patients with NIRIS 0 imaging findings were significantly younger than patients in other NIRIS categories (P<0.001). Motor vehicle accidents and falls from height were the most common mechanisms of injury across NIRIS categories. GCS scores decreased with increasing NIRIS category imaging findings and were significantly lower in patients with NIRIS 4 imaging findings (P<0.001). Significant differences in NIRIS categories were observed for all imaging CDEs (P<0.001), in agreement with the definition of the different NIRIS categories. Mortality increased progressively with increasing NIRIS severity. CONCLUSIONS: TBI patients in different NIRIS categories have different clinical characteristics, hospital courses and outcomes. This natural history assessment of patients from different NIRIS categories could thus serve as a reference standard for future TBI clinical trials.


Assuntos
Lesões Encefálicas Traumáticas , Adolescente , Adulto , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Demografia , Serviço Hospitalar de Emergência , Humanos , Neuroimagem , Tomografia Computadorizada por Raios X
4.
Neuroimage ; 217: 116864, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32360690

RESUMO

Collegiate football athletes are subject to repeated head impacts. The purpose of this study was to determine whether this exposure can lead to changes in brain structure. This prospective cohort study was conducted with up to 4 years of follow-up on 63 football (high-impact) and 34 volleyball (control) male collegiate athletes with a total of 315 MRI scans (after exclusions: football n â€‹= â€‹50, volleyball n â€‹= â€‹24, total scans â€‹= â€‹273) using high-resolution structural imaging. Volumetric and cortical thickness estimates were derived using FreeSurfer 5.3's longitudinal pipeline. A linear mixed-effects model assessed the effect of group (football vs. volleyball), time from baseline MRI, and the interaction between group and time. We confirmed an expected developmental decrement in cortical thickness and volume in our cohort (p â€‹< â€‹.001). Superimposed on this, total cortical gray matter volume (p â€‹= â€‹.03) and cortical thickness within the left hemisphere (p â€‹= â€‹.04) showed a group by time interaction, indicating less age-related volume reduction and thinning in football compared to volleyball athletes. At the regional level, sport by time interactions on thickness and volume were identified in the left orbitofrontal (p â€‹= â€‹.001), superior temporal (p â€‹= â€‹.001), and postcentral regions (p â€‹< â€‹.001). Additional cortical thickness interactions were found in the left temporal pole (p â€‹= â€‹.003) and cuneus (p â€‹= â€‹.005). At the regional level, we also found main effects of sport in football athletes characterized by reduced volume in the right hippocampus (p â€‹= â€‹.003), right superior parietal cortical gray (p â€‹< â€‹.001) and white matter (p â€‹< â€‹.001), and increased volume of the left pallidum (p â€‹= â€‹.002). Within football, cortical thickness was higher with greater years of prior play (left hemisphere p â€‹= â€‹.013, right hemisphere p â€‹= â€‹.005), and any history of concussion was associated with less cortical thinning (left hemisphere p â€‹= â€‹.010, right hemisphere p â€‹= â€‹.011). Additionally, both position-associated concussion risk (p â€‹= â€‹.002) and SCAT scores (p â€‹= â€‹.023) were associated with less of the expected volume decrement of deep gray structures. This prospective longitudinal study comparing football and volleyball athletes shows divergent age-related trajectories of cortical thinning, possibly reflecting an impact-related alteration of normal cortical development. This warrants future research into the underlying mechanisms of impacts to the head on cortical maturation.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/lesões , Futebol Americano/lesões , Adolescente , Adulto , Atletas , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Estudos de Coortes , Lateralidade Funcional , Substância Cinzenta/diagnóstico por imagem , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Voleibol/lesões , Adulto Jovem
5.
Radiology ; 290(1): 198-206, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398435

RESUMO

Purpose To investigate ferumoxytol-enhanced MRI as a noninvasive imaging biomarker of macrophages in adults with high-grade gliomas. Materials and Methods In this prospective study, adults with high-grade gliomas were enrolled between July 2015 and July 2017. Each participant was administered intravenous ferumoxytol (5 mg/kg) and underwent 3.0-T MRI 24 hours later. Two sites in each tumor were selected for intraoperative sampling on the basis of the degree of ferumoxytol-induced signal change. Susceptibility and the relaxation rates R2* (1/T2*) and R2 (1/T2) were obtained by region-of-interest analysis by using the respective postprocessed maps. Each sample was stained with Prussian blue, CD68, CD163, and glial fibrillary acidic protein. Pearson correlation and linear mixed models were performed to assess the relationship between imaging measurements and number of 400× magnification high-power fields with iron-containing macrophages. Results Ten adults (four male participants [mean age, 65 years ± 9 {standard deviation}; age range, 57-74 years] and six female participants [mean age, 53 years ± 12 years; age range, 32-65 years]; mean age of all participants, 58 years ± 12 [age range, 32-74 years]) with high-grade gliomas were included. Significant positive correlations were found between susceptibility, R2*, and R2' and the number of high-power fields with CD163-positive (r range, 0.64-0.71; P < .01) and CD68-positive (r range, 0.55-0.57; P value range, .01-.02) iron-containing macrophages. No significant correlation was found between R2 and CD163-positive (r = 0.33; P = .16) and CD68-positive (r = 0.24; P = .32) iron-containing macrophages. Similar significance results were obtained with linear mixed models. At histopathologic analysis, iron particles were found only in macrophages; none was found in glial fibrillary acidic protein-positive tumor cells. Conclusion MRI measurements of susceptibility, R2*, and R2' (R2* - R2) obtained after ferumoxytol administration correlate with iron-containing macrophage concentration, and this shows their potential as quantitative imaging markers of macrophages in malignant gliomas. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Neoplasias Encefálicas , Óxido Ferroso-Férrico/uso terapêutico , Glioma , Macrófagos/citologia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Feminino , Glioma/diagnóstico por imagem , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
6.
Neurosurg Focus ; 44(5): E12, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29712527

RESUMO

OBJECTIVE There has been considerable debate about the utility of the operating microscope in lumbar discectomy and its effect on outcomes and cost. METHODS A commercially available longitudinal database was used to identify patients undergoing discectomy with or without use of a microscope between 2007 and 2015. Propensity matching was performed to normalize differences between demographics and comorbidities in the 2 cohorts. Outcomes, complications, and cost were subsequently analyzed using bivariate analysis. RESULTS A total of 42,025 patients were identified for the "macroscopic" group, while 11,172 patients were identified for the "microscopic" group. For the propensity-matched analysis, the 11,172 patients in the microscopic discectomy group were compared with a group of 22,340 matched patients who underwent macroscopic discectomy. There were no significant differences in postoperative complications between the groups other than a higher proportion of deep vein thrombosis (DVT) in the macroscopic discectomy cohort versus the microscopic discectomy group (0.4% vs 0.2%, matched OR 0.48 [95% CI 0.26-0.82], p = 0.0045). Length of stay was significantly longer in the macroscopic group compared to the microscopic group (mean 2.13 vs 1.83 days, p < 0.0001). Macroscopic discectomy patients had a higher rate of revision surgery when compared to microscopic discectomy patients (OR 0.92 [95% CI 0.84-1.00], p = 0.0366). Hospital charges were higher in the macroscopic discectomy group (mean $19,490 vs $14,921, p < 0.0001). CONCLUSIONS The present study suggests that the use of the operating microscope in lumbar discectomy is associated with decreased length of stay, lower DVT rate, lower reoperation rate, and decreased overall hospital costs.


Assuntos
Bases de Dados Factuais/tendências , Discotomia/tendências , Custos de Cuidados de Saúde/tendências , Vértebras Lombares/cirurgia , Microcirurgia/tendências , Pontuação de Propensão , Adulto , Idoso , Bases de Dados Factuais/economia , Discotomia/efeitos adversos , Discotomia/economia , Feminino , Humanos , Tempo de Internação/economia , Tempo de Internação/tendências , Estudos Longitudinais , Masculino , Microcirurgia/efeitos adversos , Microcirurgia/economia , Pessoa de Meia-Idade , Complicações Pós-Operatórias/economia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Resultado do Tratamento
7.
Neurospine ; 21(2): 620-632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768945

RESUMO

OBJECTIVE: Readmission rates after posterior cervical fusion (PCF) significantly impact patients and healthcare, with complication rates at 15%-25% and up to 12% 90-day readmission rates. In this study, we aim to test whether machine learning (ML) models that capture interfactorial interactions outperform traditional logistic regression (LR) in identifying readmission-associated factors. METHODS: The Optum Clinformatics Data Mart database was used to identify patients who underwent PCF between 2004-2017. To determine factors associated with 30-day readmissions, 5 ML models were generated and evaluated, including a multivariate LR (MLR) model. Then, the best-performing model, Gradient Boosting Machine (GBM), was compared to the LACE (Length patient stay in the hospital, Acuity of admission of patient in the hospital, Comorbidity, and Emergency visit) index regarding potential cost savings from algorithm implementation. RESULTS: This study included 4,130 patients, 874 of which were readmitted within 30 days. When analyzed and scaled, we found that patient discharge status, comorbidities, and number of procedure codes were factors that influenced MLR, while patient discharge status, billed admission charge, and length of stay influenced the GBM model. The GBM model significantly outperformed MLR in predicting unplanned readmissions (mean area under the receiver operating characteristic curve, 0.846 vs. 0.829; p < 0.001), while also projecting an average cost savings of 50% more than the LACE index. CONCLUSION: Five models (GBM, XGBoost [extreme gradient boosting], RF [random forest], LASSO [least absolute shrinkage and selection operator], and MLR) were evaluated, among which, the GBM model exhibited superior predictive performance, robustness, and accuracy. Factors associated with readmissions impact LR and GBM models differently, suggesting that these models can be used complementarily. When analyzing PCF procedures, the GBM model resulted in greater predictive performance and was associated with higher theoretical cost savings for readmissions associated with PCF complications.

8.
Spine (Phila Pa 1976) ; 48(17): 1224-1233, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37027190

RESUMO

STUDY DESIGN: A retrospective cohort study. OBJECTIVE: To identify the factors associated with readmissions after PLF using machine learning and logistic regression (LR) models. SUMMARY OF BACKGROUND DATA: Readmissions after posterior lumbar fusion (PLF) place significant health and financial burden on the patient and overall health care system. MATERIALS AND METHODS: The Optum Clinformatics Data Mart database was used to identify patients who underwent posterior lumbar laminectomy, fusion, and instrumentation between 2004 and 2017. Four machine learning models and a multivariable LR model were used to assess factors most closely associated with 30-day readmission. These models were also evaluated in terms of ability to predict unplanned 30-day readmissions. The top-performing model (Gradient Boosting Machine; GBM) was then compared with the validated LACE index in terms of potential cost savings associated with the implementation of the model. RESULTS: A total of 18,981 patients were included, of which 3080 (16.2%) were readmitted within 30 days of initial admission. Discharge status, prior admission, and geographic division were most influential for the LR model, whereas discharge status, length of stay, and prior admissions had the greatest relevance for the GBM model. GBM outperformed LR in predicting unplanned 30-day readmission (mean area under the receiver operating characteristic curve 0.865 vs. 0.850, P <0.0001). The use of GBM also achieved a projected 80% decrease in readmission-associated costs relative to those achieved by the LACE index model. CONCLUSIONS: The factors associated with readmission vary in terms of predictive influence based on standard LR and machine learning models used, highlighting the complementary roles these models have in identifying relevant factors for the prediction of 30-day readmissions. For PLF procedures, GBM yielded the greatest predictive ability and associated cost savings for readmission. LEVEL OF EVIDENCE: 3.


Assuntos
Hospitalização , Readmissão do Paciente , Humanos , Estudos Retrospectivos , Fatores de Risco , Aprendizado de Máquina
9.
Neuroradiol J ; 36(1): 68-75, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35588232

RESUMO

INTRODUCTION: Traumatic brain injury (TBI) is a major public health concern in the U.S. Recommendations for patients admitted in the emergency department (ED) to receive head computed tomography (CT) scan are currently guided by various clinical decision rules. OBJECTIVE: To compare how a blood biomarker approach compares with clinical decision rules in terms of predicting a positive head CT in adult patients suspected of TBI. METHODS: We retrospectively identified patients transported to our emergency department and underwent a noncontrast head CT due to suspicion of TBI and who had blood samples available. Published thresholds for serum and plasma glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and serum S100ß were used to make CT recommendations. These blood biomarker-based recommendations were compared to those achieved under widely used clinical head CT decision rules (Canadian, New Orleans, NEXUS II, and ACEP Clinical Policy). RESULTS: Our study included 463 patients, of which 122 (26.3%) had one or more abnormalities presenting on head CT. Individual blood biomarkers achieved high negative predictive value (NPV) for abnormal head CT findings (88%-98%), although positive predictive value (PPV) was consistently low (25%-42%). A composite biomarker-based decision rule (GFAP+UCH-L1)'s NPV of 100% and PPV of 29% were comparable or better than those achieved under the clinical decision rules. CONCLUSION: Blood biomarkers perform at least as well as clinical rules in terms of selecting TBI patients for head CT and may be easier to implement in the clinical setting. A prospective study is necessary to validate this approach.


Assuntos
Lesões Encefálicas Traumáticas , Regras de Decisão Clínica , Adulto , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Ubiquitina Tiolesterase , Canadá , Biomarcadores , Tomografia Computadorizada por Raios X
10.
J Spine Surg ; 8(4): 426-435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36605994

RESUMO

Background: The United States has been facing a worsening opioid epidemic over the past two decades. The veteran population represents a large and vulnerable group with a higher burden of mental health comorbidities. The purpose of this study was to analyze the impact of lumbar spine surgery on postoperative opioid usage in the United States veteran population. Methods: A retrospective cohort study was conducted using the Veterans Affairs Informatics and Computing Infrastructure database. Patients who underwent lumbar spine surgery were stratified into three groups by their preoperative opioid claims within 365 days of surgery. Postoperative cumulative morphine milligram equivalents (MME) were tracked for each group and the paired Wilcoxon signed rank test was used to compare cumulative preoperative MME (days -365-0) to cumulative postoperative MME (days 91-455). Results: At one year, 30.6% of patients in the high preoperative opioid group and 73.1% of patients in the low preoperative opioid group were no longer using opioids. In the opioid naive cohort, 10.0% of patients were still using opioids at one year. Among all patients, median cumulative postoperative MME was significantly less than median cumulative preoperative MME (P<0.001). High preoperative opioid usage of more than 3 claims was most significantly associated with continued postoperative opioid usage (odds ratio 12.55, P<0.001). From 2010 to 2020 the proportion of patients with preoperative opioid claims decreased (58.8% to 34.8%). Conclusions: In the veteran population, lumbar spine surgery was effective in getting 50% of patients who were on opioids preoperatively to discontinue opioids postoperatively. Even minimal exposure to opioids preoperatively resulted in a 2.69-time increase in risk of being on opioids at one year versus opioid naive patients. This study affirms that despite being a high-risk population, the veteran population has a similar response to lumbar spine surgery as the general population in regards to opioid dependence.

11.
Neurospine ; 19(1): 133-145, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35378587

RESUMO

OBJECTIVE: Intradural spinal tumors are uncommon and while associations between clinical characteristics and surgical outcomes have been explored, there remains a paucity of literature unifying diverse predictors into an integrated risk model. To predict postresection outcomes for patients with spinal tumors. METHODS: IBM MarketScan Claims Database was queried for adult patients receiving surgery for intradural tumors between 2007 and 2016. Primary outcomes-of-interest were nonhome discharge and 90-day postdischarge readmissions. Secondary outcomes included hospitalization duration and postoperative complications. Risk modeling was developed using a regularized logistic regression framework (LASSO, least absolute shrinkage and selection operator) and validated in a withheld subset. RESULTS: A total of 5,060 adult patients were included. Most surgeries utilized a posterior approach (n = 5,023, 99.3%) and tumors were most commonly found in the thoracic region (n = 1,941, 38.4%), followed by the lumbar (n = 1,781, 35.2%) and cervical (n = 1,294, 25.6%) regions. Compared to models using only tumor-specific or patient-specific features, our integrated models demonstrated better discrimination (area under the curve [AUC] [nonhome discharge] = 0.786; AUC [90-day readmissions] = 0.693) and accuracy (Brier score [nonhome discharge] = 0.155; Brier score [90-day readmissions] = 0.093). Compared to those predicted to be lowest risk, patients predicted to be highest-risk for nonhome discharge required continued care 16.3 times more frequently (64.5% vs. 3.9%). Similarly, patients predicted to be at highest risk for postdischarge readmissions were readmitted 7.3 times as often as those predicted to be at lowest risk (32.6% vs. 4.4%). CONCLUSION: Using a diverse set of clinical characteristics spanning tumor-, patient-, and hospitalization-derived data, we developed and validated risk models integrating diverse clinical data for predicting nonhome discharge and postdischarge readmissions.

12.
J Neurotrauma ; 39(19-20): 1329-1338, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35546284

RESUMO

The objective of this work was to analyze the relationships between traumatic brain injury (TBI) on computed tomographic (CT) imaging and blood concentration of glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), and S100B. This prospective cohort study involved 644 TBI patients referred to Stanford Hospital's Emergency Department between November 2015 and April 2017. Plasma and serum samples of 462 patients were analyzed for levels of GFAP, UCH-L1, and S100B. Glial neuronal ratio (GNR) was calculated as the ratio between GFAP and UCH-L1 concentrations. Admission head CT scans were reviewed for TBI imaging common data elements, and performance of biomarkers for identifying TBI was assessed via area under the receiver operating characteristic curve (ROC). We also dichotomized biomarkers at established thresholds and estimated standard measures of classification accuracy. We assessed the ability of GFAP, UCH-L1, and GNR to discriminate small and large/diffuse lesions based on CT imaging using an ROC analysis. In our cohort of mostly mild TBI patients, GFAP was significantly more accurate in detecting all types of acute brain injuries than UCH-L1 in terms of area under the curve (AUC) values (p < 0.001), and also compared with S100B (p < 0.001). UCH-L1 and S100B had similar performance (comparable AUC values, p = 0.342). Sensitivity exceeded 0.8 for each biomarker across all different types of TBI injuries, and no significant differences were observed by type of injury. There was a significant difference between GFAP and GNR in distinguishing between small lesions and large/diffuse lesions in all injuries (p = 0.004, p = 0.007). In conclusion, GFAP, UCH-L1, and S100B show high sensitivity and negative predictive values for all types of TBI lesions on head CT. A combination of negative blood biomarkers (GFAP and UCH-L1) in a patient suspected of TBI may be used to safely obviate the need for a head CT scan. GFAP is a promising indicator to discriminate between small and large/diffuse TBI lesions.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico , Estudos de Coortes , Proteína Glial Fibrilar Ácida , Humanos , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Ubiquitina Tiolesterase
13.
IEEE Trans Haptics ; 14(4): 762-775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33844633

RESUMO

Intracortical brain-computer interfaces (iBCIs) provide people with paralysis a means to control devices with signals decoded from brain activity. Despite recent impressive advances, these devices still cannot approach able-bodied levels of control. To achieve naturalistic control and improved performance of neural prostheses, iBCIs will likely need to include proprioceptive feedback. With the goal of providing proprioceptive feedback via mechanical haptic stimulation, we aim to understand how haptic stimulation affects motor cortical neurons and ultimately, iBCI control. We provided skin shear haptic stimulation as a substitute for proprioception to the back of the neck of a person with tetraplegia. The neck location was determined via assessment of touch sensitivity using a monofilament test kit. The participant was able to correctly report skin shear at the back of the neck in 8 unique directions with 65% accuracy. We found motor cortical units that exhibited sensory responses to shear stimuli, some of which were strongly tuned to the stimuli and well modeled by cosine-shaped functions. In this article, we also demonstrated online iBCI cursor control with continuous skin-shear feedback driven by decoded command signals. Cursor control performance increased slightly but significantly when the participant was given haptic feedback, compared to the purely visual feedback condition.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Retroalimentação , Retroalimentação Sensorial , Tecnologia Háptica , Humanos , Quadriplegia
14.
J Am Coll Radiol ; 18(5): 704-712, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33444562

RESUMO

OBJECTIVE: The Radiology Support, Communication and Alignment Network (R-SCAN) is a quality improvement program through which patients, referring clinicians, and radiologists collaborate to improve imaging appropriateness based on Choosing Wisely recommendations and ACR Appropriateness Criteria. R-SCAN was shown previously to increase the odds of obtaining an appropriate, higher patient or diagnostic value, imaging study. In the current study, we aimed to estimate the potential imaging cost savings associated with R-SCAN use for the Medicare population. MATERIAL AND METHODS: The R-SCAN data set was used to determine the proportion of appropriate and lesser value imaging studies performed, as well as the percent change in the total number of imaging studies performed, before and after an R-SCAN educational intervention. Using a separate CMS data set, we then identified the total number of relevant imaging studies and associated total costs using a 5% sample of Medicare beneficiaries in 2017. We applied R-SCAN proportions to the CMS data set to estimate the potential impact of the R-SCAN interventions across a broader Medicare population. RESULTS: We observed a substantial reduction in the costs associated with lesser value imaging in the R-SCAN cohort, totaling $260,000 over 3.5 months. When extrapolated to the Medicare population, the potential cost reductions associated with the decrease in lesser value imaging totaled $433 million yearly. CONCLUSION: If expanded broadly, R-SCAN interventions can result in substantial savings to the Medicare program.


Assuntos
Medicare , Radiologia , Idoso , Comunicação , Redução de Custos , Diagnóstico por Imagem , Humanos , Estados Unidos
15.
IEEE Trans Biomed Eng ; 68(7): 2313-2325, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33784612

RESUMO

OBJECTIVE: Individuals with neurological disease or injury such as amyotrophic lateral sclerosis, spinal cord injury or stroke may become tetraplegic, unable to speak or even locked-in. For people with these conditions, current assistive technologies are often ineffective. Brain-computer interfaces are being developed to enhance independence and restore communication in the absence of physical movement. Over the past decade, individuals with tetraplegia have achieved rapid on-screen typing and point-and-click control of tablet apps using intracortical brain-computer interfaces (iBCIs) that decode intended arm and hand movements from neural signals recorded by implanted microelectrode arrays. However, cables used to convey neural signals from the brain tether participants to amplifiers and decoding computers and require expert oversight, severely limiting when and where iBCIs could be available for use. Here, we demonstrate the first human use of a wireless broadband iBCI. METHODS: Based on a prototype system previously used in pre-clinical research, we replaced the external cables of a 192-electrode iBCI with wireless transmitters and achieved high-resolution recording and decoding of broadband field potentials and spiking activity from people with paralysis. Two participants in an ongoing pilot clinical trial completed on-screen item selection tasks to assess iBCI-enabled cursor control. RESULTS: Communication bitrates were equivalent between cabled and wireless configurations. Participants also used the wireless iBCI to control a standard commercial tablet computer to browse the web and use several mobile applications. Within-day comparison of cabled and wireless interfaces evaluated bit error rate, packet loss, and the recovery of spike rates and spike waveforms from the recorded neural signals. In a representative use case, the wireless system recorded intracortical signals from two arrays in one participant continuously through a 24-hour period at home. SIGNIFICANCE: Wireless multi-electrode recording of broadband neural signals over extended periods introduces a valuable tool for human neuroscience research and is an important step toward practical deployment of iBCI technology for independent use by individuals with paralysis. On-demand access to high-performance iBCI technology in the home promises to enhance independence and restore communication and mobility for individuals with severe motor impairment.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Mãos , Humanos , Microeletrodos , Quadriplegia
16.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33495242

RESUMO

Intracortical brain-computer interfaces (iBCIs) have the potential to restore hand grasping and object interaction to individuals with tetraplegia. Optimal grasping and object interaction require simultaneous production of both force and grasp outputs. However, since overlapping neural populations are modulated by both parameters, grasp type could affect how well forces are decoded from motor cortex in a closed-loop force iBCI. Therefore, this work quantified the neural representation and offline decoding performance of discrete hand grasps and force levels in two human participants with tetraplegia. Participants attempted to produce three discrete forces (light, medium, hard) using up to five hand grasp configurations. A two-way Welch ANOVA was implemented on multiunit neural features to assess their modulation to force and grasp Demixed principal component analysis (dPCA) was used to assess for population-level tuning to force and grasp and to predict these parameters from neural activity. Three major findings emerged from this work: (1) force information was neurally represented and could be decoded across multiple hand grasps (and, in one participant, across attempted elbow extension as well); (2) grasp type affected force representation within multiunit neural features and offline force classification accuracy; and (3) grasp was classified more accurately and had greater population-level representation than force. These findings suggest that force and grasp have both independent and interacting representations within cortex, and that incorporating force control into real-time iBCI systems is feasible across multiple hand grasps if the decoder also accounts for grasp type.


Assuntos
Córtex Motor , Mãos , Força da Mão , Humanos , Quadriplegia
17.
World Neurosurg ; 137: e328-e335, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32028000

RESUMO

OBJECTIVE: To compare clinical outcomes and payments between glioma resections with and without functional mapping. METHODS: The Thomas Reuters MarketScan national longitudinal database was used to identify patients undergoing resection of supratentorial primary malignant glioma with or without functional mapping between 2007 and 2016. Patients were stratified into mapped and unmapped (conventional) groups and subsequently propensity-matched based on demographics, clinical comorbidities, and surgical characteristics (i.e., use of stereotactic navigation, microscope, and intratumoral chemotherapy). Outcomes and charges were compared between matched groups using bivariate analyses. RESULTS: A total of 14,037 patients were identified, of whom 796 (6.0%) received functional mapping. Propensity matching (1:1) resulted in 796 mapped patients and 796 propensity-matched controls. Thirty-day postoperative rates of new-onset seizures, cerebral edema, hemorrhage, and neurologic deficits were significantly lower for the functional mapping group (all P < 0.05). Functional mapping was also associated with shorter hospital length of stay (P = 0.0144), lower 30-day rates of emergency department visits (P = 0.0001), and fewer reoperations (P = 0.0068). Total costs of initial admission were not significantly different between groups. CONCLUSIONS: Intraoperative functional mapping during glioma resection was associated with decreased complications, reoperations, emergency department visits, and shorter lengths of stay. Furthermore, total charges of mapped resections were not significantly different from those of conventional resections. These findings support the usefulness of functional mapping for resection of supratentorial primary malignant gliomas.


Assuntos
Mapeamento Encefálico/métodos , Glioma/cirurgia , Monitorização Neurofisiológica Intraoperatória/métodos , Procedimentos Neurocirúrgicos/métodos , Neoplasias Supratentoriais/cirurgia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pontuação de Propensão , Estudos Retrospectivos
18.
Global Spine J ; 10(8): 1046-1056, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32875831

RESUMO

STUDY DESIGN: Systemic review and meta-analysis. OBJECTIVES: To review and compare surgical outcomes for patients undergoing stand-alone anterior cervical discectomy and fusion (ACDF) versus cervical disc arthroplasty (CDA) for the treatment of cervical spine disease. METHODS: A systematic search was performed on PubMed, Medline, and the Cochrane Library. Comparative trials measuring outcomes of patients undergoing CDA and stand-alone ACDF for degenerative spine disease in the last 10 years were selected for inclusion. After data extraction and quality assessment, statistical analysis was performed with R software metafor package. The random-effects model was used if there was heterogeneity between studies; otherwise, the fixed-effects model was used. RESULTS: In total, 12 studies including 859 patients were selected for inclusion in the meta-analysis. Patients undergoing stand-alone ACDF had a statistically significant increase in postoperative segmental angles (mean difference 0.85° [95% confidence interval = 0.35° to 1.35°], P = .0008). Patients undergoing CDA had a decreased rate of developing adjacent segmental degeneration (risk ratio = 0.56 [95% confidence interval = -0.06 to 1.18], P = .0745). Neck Disability Index, Japanese Orthopedic Association score, Visual Analogue Scale of the arm and neck, as well as postoperative cervical angles were similar between the 2 treatments. CONCLUSIONS: When compared with CDA, stand-alone ACDF offers similar clinical outcomes for patients and leads to increased postoperative segmental angles. We encourage further blinded randomized trials to compare rates of adjacent segmental degeneration and other postoperative outcomes between these 2 treatments options.

19.
Sci Rep ; 10(1): 4939, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188895

RESUMO

Patient-reported outcome measures (PROMs) are commonly used to estimate disability of patients with spinal degenerative disease. Emerging technological advances present an opportunity to provide objective measurements of activity. In a prospective, observational study we utilized a low-cost consumer grade wearable accelerometer (LCA) to determine patient activity (steps per day) preoperatively (baseline) and up to one year (Y1) after cervical and lumbar spine surgery. We studied 30 patients (46.7% male; mean age 57 years; 70% Caucasian) with a baseline activity level of 5624 steps per day. The activity level decreased by 71% in the 1st postoperative week (p < 0.001) and remained 37% lower in the 2nd (p < 0.001) and 23% lower in the 4th week (p = 0.015). At no time point until Y1 did patients increase their activity level, compared to baseline. Activity was greater in patients with cervical, as compared to patients with lumbar spine disease. Age, sex, ethnic group, anesthesia risk score and fusion were variables associated with activity. There was no correlation between activity and PROMs, but a strong correlation with depression. Determining activity using LCAs provides real-time and longitudinal information about patient mobility and return of function. Recovery took place over the first eight postoperative weeks, with subtle improvement afterwards.


Assuntos
Doenças da Coluna Vertebral/diagnóstico , Doenças da Coluna Vertebral/cirurgia , Adulto , Idoso , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Vértebras Cervicais/cirurgia , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Vértebras Lombares/cirurgia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Medidas de Resultados Relatados pelo Paciente , Radiografia , Doenças da Coluna Vertebral/etiologia , Doenças da Coluna Vertebral/reabilitação , Avaliação de Sintomas
20.
J Am Coll Radiol ; 17(5): 597-605, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32371000

RESUMO

PURPOSE: The aim of this study was to determine whether participation in Radiology Support, Communication and Alignment Network (R-SCAN) results in a reduction of inappropriate imaging in a wide range of real-world clinical environments. METHODS: This quality improvement study used imaging data from 27 US academic and private practices that completed R-SCAN projects between January 25, 2015, and August 8, 2018. Each project consisted of baseline, educational (intervention), and posteducational phases. Baseline and posteducational imaging cases were rated as high, medium, or low value on the basis of validated ACR Appropriateness Criteria®. Four cohorts were generated: a comprehensive cohort that included all eligible practices and three topic-specific cohorts that included practices that completed projects of specific Choosing Wisely topics (pulmonary embolism, adnexal cyst, and low back pain). Changes in the proportion of high-value cases after R-SCAN intervention were assessed for each cohort using generalized estimating equation logistic regression, and changes in the number of low-value cases were analyzed using Poisson regression. RESULTS: Use of R-SCAN in the comprehensive cohort resulted in a greater proportion of high-value imaging cases (from 57% to 79%; odds ratio, 2.69; 95% confidence interval, 1.50-4.86; P = .001) and 345 fewer low-value cases after intervention (incidence rate ratio, 0.45; 95% confidence interval, 0.29-0.70; P < .001). Similar changes in proportion of high-value cases and number of low-value cases were found for the pulmonary embolism, adnexal cyst, and low back pain cohorts. CONCLUSIONS: R-SCAN participation was associated with a reduced likelihood of inappropriate imaging and is thus a promising tool to enhance the quality of patient care and promote wise use of health care resources.


Assuntos
Radiologia , Estudos de Coortes , Comunicação , Diagnóstico por Imagem , Humanos , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA