Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(17): 4381-4386, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632200

RESUMO

Methane can be converted to triose dihydroxyacetone (DHA) by chemical processes with formaldehyde as an intermediate. Carbon dioxide, a by-product of various industries including ethanol/butanol biorefineries, can also be converted to formaldehyde and then to DHA. DHA, upon entry into a cell and phosphorylation to DHA-3-phosphate, enters the glycolytic pathway and can be fermented to any one of several products. However, DHA is inhibitory to microbes due to its chemical interaction with cellular components. Fermentation of DHA to d-lactate by Escherichia coli strain TG113 was inefficient, and growth was inhibited by 30 g⋅L-1 DHA. An ATP-dependent DHA kinase from Klebsiella oxytoca (pDC117d) permitted growth of strain TG113 in a medium with 30 g⋅L-1 DHA, and in a fed-batch fermentation the d-lactate titer of TG113(pDC117d) was 580 ± 21 mM at a yield of 0.92 g⋅g-1 DHA fermented. Klebsiella variicola strain LW225, with a higher glucose flux than E. coli, produced 811 ± 26 mM d-lactic acid at an average volumetric productivity of 2.0 g-1⋅L-1⋅h-1 Fermentation of DHA required a balance between transport of the triose and utilization by the microorganism. Using other engineered E. coli strains, we also fermented DHA to succinic acid and ethanol, demonstrating the potential of converting CH4 and CO2 to value-added chemicals and fuels by a combination of chemical/biological processes.


Assuntos
Di-Hidroxiacetona/metabolismo , Escherichia coli/crescimento & desenvolvimento , Klebsiella/crescimento & desenvolvimento , Ácido Láctico/biossíntese , Engenharia Metabólica , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Escherichia coli/genética , Fermentação/fisiologia , Glucose/metabolismo , Klebsiella/genética , Microrganismos Geneticamente Modificados/metabolismo
2.
Appl Microbiol Biotechnol ; 101(4): 1465-1476, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27766358

RESUMO

Paenibacillus sp. JDR-2 (Pjdr2) has been studied as a model for development of bacterial biocatalysts for efficient processing of xylans, methylglucuronoxylan, and methylglucuronoarabinoxylan, the predominant hemicellulosic polysaccharides found in dicots and monocots, respectively. Pjdr2 produces a cell-associated GH10 endoxylanase (Xyn10A1) that catalyzes depolymerization of xylans to xylobiose, xylotriose, and methylglucuronoxylotriose with methylglucuronate-linked α-1,2 to the nonreducing terminal xylose. A GH10/GH67 xylan utilization regulon includes genes encoding an extracellular cell-associated Xyn10A1 endoxylanase and an intracellular GH67 α-glucuronidase active on methylglucuronoxylotriose generated by Xyn10A1 but without activity on methylglucuronoxylotetraose generated by a GH11 endoxylanase. The sequenced genome of Pjdr2 contains three paralogous genes potentially encoding GH115 α-glucuronidases found in certain bacteria and fungi. One of these, Pjdr2_5977, shows enhanced expression during growth on xylans along with Pjdr2_4664 encoding a GH11 endoxylanase. Here, we show that Pjdr2_5977 encodes a GH115 α-glucuronidase, Agu115A, with maximal activity on the aldouronate methylglucuronoxylotetraose selectively generated by a GH11 endoxylanase Xyn11 encoded by Pjdr2_4664. Growth of Pjdr2 on this methylglucuronoxylotetraose supports a process for Xyn11-mediated extracellular depolymerization of methylglucuronoxylan and Agu115A-mediated intracellular deglycosylation as an alternative to the GH10/GH67 system previously defined in this bacterium. A recombinantly expressed enzyme encoded by the Pjdr2 agu115A gene catalyzes removal of 4-O-methylglucuronate residues α-1,2 linked to internal xylose residues in oligoxylosides generated by GH11 and GH30 xylanases and releases methylglucuronate from polymeric methylglucuronoxylan. The GH115 α-glucuronidase from Pjdr2 extends the discovery of this activity to members of the phylum Firmicutes and contributes to a novel system for bioprocessing hemicelluloses.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Paenibacillus/enzimologia , Paenibacillus/metabolismo , Xilanos/metabolismo
3.
Appl Environ Microbiol ; 82(6): 1789-1798, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26746717

RESUMO

Paenibacillus sp. strain JDR-2 (Paenibacillus JDR-2) secretes a multimodular cell-associated glycoside hydrolase family 10 (GH10) endoxylanase (XynA10A1) that catalyzes the depolymerization of methylglucuronoxylan (MeGXn) and rapidly assimilates the products of depolymerization. Efficient utilization of MeGXn has been postulated to result from the coupling of the processes of exocellular depolymerization and assimilation of oligosaccharide products, followed by intracellular metabolism. Growth and substrate utilization patterns with barley glucan and laminarin similar to those observed with MeGXn as a substrate suggest similar processes for 1,3-1,4-ß-glucan and 1,3-ß-glucan depolymerization and product assimilation. The Paenibacillus JDR-2 genome includes a cluster of genes encoding a secreted multimodular GH16 ß-glucanase (Bgl16A1) containing surface layer homology (SLH) domains, a secreted GH16 ß-glucanase with only a catalytic domain (Bgl16A2), transporter proteins, and transcriptional regulators. Recombinant Bgl16A1 and Bgl16A2 catalyze the formation of trisaccharides, tetrasaccharides, and larger oligosaccharides from barley glucan and of mono-, di-, tri-, and tetrasaccharides and larger oligosaccharides from laminarin. The lack of accumulation of depolymerization products during growth and a marked preference for polymeric glucan over depolymerization products support a process coupling extracellular depolymerization, assimilation, and intracellular metabolism for ß-glucans similar to that ascribed to the GH10/GH67 xylan utilization system in Paenibacillus JDR-2. Coordinate expression of genes encoding GH16 ß-glucanases, transporters, and transcriptional regulators supports their role as a regulon for the utilization of soluble ß-glucans. As in the case of the xylan utilization regulons, this soluble ß-glucan regulon provides advantages in the growth rate and yields on polymeric substrates and may be exploited for the efficient conversion of plant-derived polysaccharides to targeted products.


Assuntos
Paenibacillus/genética , Paenibacillus/metabolismo , Regulon , beta-Glucanas/metabolismo , Proteínas de Bactérias/genética , Genoma Bacteriano , Redes e Vias Metabólicas , Família Multigênica
4.
Appl Microbiol Biotechnol ; 100(3): 1501-1510, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26559526

RESUMO

Methylglucuronoxylans (MeGXn) and methylglucuronoarabinoxylans (MeGAXn) respectively comprise most of the hemicellulose fractions in dicots and monocots and, next to cellulose, are the major resources for the production of fuels and chemicals from lignocellulosics. With either MeGXn or MeGAXn as a substrate, Bacillus subtilis 168 accumulates acidic methylglucuronoxylotriose as a limit product following the uptake and metabolism of neutral xylooligosaccharides. Secreted GH11 endoxylanase (Xyn11A), GH30 endoxylanase (Xyn30C), and GH43 arabinoxylan arabinofuranohydrolase (Axh43) respectively encoded by the xynA, xynC, and xynD genes collectively contribute to the depolymerization of MeGAXn. Studies here demonstrate the complementary roles of these enzymes in the digestion of MeGAXn. Coordinate expression of the xynD and xynC genes defines an operon accounting for the Axh43-catalyzed release of arabinose followed by Xyn30C and Xyn11A-catalyzed depolymerization of MeGAXn. Both sources generate acetate and lactate as the principal fermentation products, with yields of 26 % acetate and 32 % lactate from MeGXn compared to 22 % acetate and 21 % lactate from MeGAXn. These studies of the GH43/GH30/GH11 system in B. subtilis 168 provide a basis for the further development of B. subtilis and related species as biocatalysts for direct conversion of hemicellulose derived from energy crops as well as agricultural and forest residues to chemical feedstocks.


Assuntos
Bacillus subtilis/metabolismo , Xilanos/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Biotransformação , Endo-1,4-beta-Xilanases/metabolismo , Fermentação , Xilanos/química
5.
Appl Environ Microbiol ; 80(3): 917-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24271172

RESUMO

Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and xynC genes, respectively. Both of these enzymes have been defined with respect to structure and function. In this study, the effects of deletion of the xynA and xynC genes, individually and in combination, were evaluated for xylan utilization and formation of acidic xylooligosaccharides. Parent strain 168 depolymerizes methylglucuronoxylans (MeGXn), releasing the xylobiose and xylotriose utilized for growth and accumulating the aldouronate methylglucuronoxylotriose (MeGX3) with some methylglucuronoxylotetraose (MeGX4). The combined GH11 and GH30 activities process the products generated by their respective actions on MeGXn to release a maximal amount of neutral xylooligosaccharides for assimilation and growth, at the same time forming MeGX3 in which the internal xylose is substituted with methylglucuronate (MeG). Deletion of xynA results in the accumulation of ß-1,4-xylooligosaccharides with degrees of polymerization ranging from 4 to 18 and an average degree of substitution of 1 in 7.2, each with a single MeG linked α-1,2 to the xylose penultimate to the xylose at the reducing terminus. Deletion of the xynC gene results in the accumulation of aldouronates comprised of 4 or more xylose residues in which the MeG may be linked α-1,2 to the xylose penultimate to the nonreducing xylose. These B. subtilis lines may be used for the production of acidic xylooligosaccharides with applications in human and veterinary medicine.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Glucuronatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/metabolismo , Xilanos/metabolismo , Xilosidases/metabolismo , Bacillus subtilis/genética , Deleção de Genes , Glicosídeo Hidrolases/genética , Xilosidases/genética
6.
J Cosmet Dermatol ; 22(3): 1031-1045, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36374551

RESUMO

BACKGROUND: When formulating topical products to treat skin diseases and addressing general skin health and cosmesis, most of the focus has traditionally been placed on how any given ingredient may impact the structure, function, and health of human skin elements. However, recent research is beginning to highlight the importance of the skin microbiome in relation to certain skin conditions and general cosmesis. Cutibacterium acnes is one of the most prolific skin-specific bacterial species. Research has shown that the species is divided into subspecies, some of which are thought to be beneficial to the skin. This paper aims to determine the efficacy of strainXYCM42, a C. acnes subspecies defendens derived strain designed to improve the health and appearance of the skin. METHODS: In vitro studies were performed on human keratinocyte and fibroblast monolayers, human peripheral blood mononuclear cells (PBMC), and skin explants to elucidate the effects of live XYCM42 cells and their ferment on human skin cells and tissues. Subsequently, clinical studies were performed using XYCM42-based topical regimens designed to deliver and support the engraftment of live XYCM42 cells onto subjects' skin. Two studies were performed, a 3-week pilot study (n = 10) and a 8-week pivotal study (n = 121). In the latter, 32 subjects were enrolled for an in-clinic portion for efficacy evaluation, with clinic visits occurring at Baseline, Week 1, Week 4, and Week 8. RESULTS: In vitro data suggest that XYCM42 and its ferment filtrate have potential to provide benefits to the skin via antioxidant, anti-inflammatory, and select antimicrobial activities. Clinical observation demonstrated that a XYCM42-containing regimen supports a healthy skin environment, promotes increased skin hydration, decreases erythema, calms the skin, and regulates sebum production. CONCLUSION: These studies provide further evidence that specific strains of C. acnes, such as XYCM42, have a more beneficial function regarding skin health and appearance than was previously thought. Appropriate use of formulations derived from symbiotic strains within the skin microbiome can support the development of novel, beneficial topicals.


Assuntos
Acne Vulgar , Dermatopatias , Humanos , Leucócitos Mononucleares , Projetos Piloto , Pele/microbiologia , Acne Vulgar/tratamento farmacológico , Queratinócitos , Propionibacterium acnes
7.
Microbiology (Reading) ; 158(Pt 5): 1350-1358, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22343352

RESUMO

Pyruvate dehydrogenase (PDH) of Escherichia coli is inhibited by NADH. This inhibition is partially reversed by mutational alteration of the dihydrolipoamide dehydrogenase (LPD) component of the PDH complex (E354K or H322Y). Such a mutation in lpd led to a PDH complex that was functional in an anaerobic culture as seen by restoration of anaerobic growth of a pflB, ldhA double mutant of E. coli utilizing a PDH- and alcohol dehydrogenase-dependent homoethanol fermentation pathway. The glutamate at position 354 in LPD was systematically changed to all of the other natural amino acids to evaluate the physiological consequences. These amino acid replacements did not affect the PDH-dependent aerobic growth. With the exception of E354M, all changes also restored PDH-dependent anaerobic growth of and fermentation by an ldhA, pflB double mutant. The PDH complex with an LPD alteration E354G, E354P or E354W had an approximately 20-fold increase in the apparent K(i) for NADH compared with the native complex. The apparent K(m) for pyruvate or NAD(+) for the mutated forms of PDH was not significantly different from that of the native enzyme. A structural model of LPD suggests that the amino acid at position 354 could influence movement of NADH from its binding site to the surface. These results indicate that glutamate at position 354 plays a structural role in establishing the NADH sensitivity of LPD and the PDH complex by restricting movement of the product/substrate NADH, although this amino acid is not directly associated with NAD(H) binding.


Assuntos
Di-Hidrolipoamida Desidrogenase/genética , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , NAD/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Substituição de Aminoácidos , Di-Hidrolipoamida Desidrogenase/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Etanol/metabolismo , Fermentação , Ácido Glutâmico/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Complexo Piruvato Desidrogenase/genética , Ácido Pirúvico/metabolismo
8.
J Ind Microbiol Biotechnol ; 38(3): 441-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20677017

RESUMO

Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.


Assuntos
Bacillus/fisiologia , Proteínas de Bactérias/genética , Fermentação , L-Lactato Desidrogenase/genética , Acetiltransferases/metabolismo , Álcool Desidrogenase/metabolismo , Bacillus/enzimologia , Bacillus/genética , Bacillus/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Microbiologia Industrial , Ácido Láctico/biossíntese , Mutação , Complexo Piruvato Desidrogenase/metabolismo , Temperatura
9.
Stand Genomic Sci ; 5(3): 331-40, 2011 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-22675583

RESUMO

Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

10.
Plasmid ; 58(1): 13-22, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17215040

RESUMO

Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.


Assuntos
Bacillus/genética , Eletroporação , Técnicas de Transferência de Genes , Vetores Genéticos , Plasmídeos/genética , Sequência de Aminoácidos , Bacillus/fisiologia , DNA Helicases/genética , Dados de Sequência Molecular , Esporos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA