Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7962): 764-768, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198478

RESUMO

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Assuntos
COVID-19 , Estado Terminal , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , COVID-19/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genótipo , Técnicas de Genotipagem , Monócitos/metabolismo , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Transcriptoma , Sequenciamento Completo do Genoma
3.
Ann Hum Biol ; 51(1): 2366248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39012049

RESUMO

BACKGROUND: Genome-wide association studies of COVID-19 severity have been carried out mostly on European or East Asian populations with small representation of other world regions. Here we explore the worldwide distribution and linkage disequilibrium (LD) patterns of genetic variants previously associated with COVID-19 severity. METHODS: We followed up the results of a large Spanish genome-wide meta-analysis on 26 populations from the 1000 Genomes Project by calculating allele frequencies and LD scores of the nine most significant SNPs. We also used the entire set of summary statistics to compute polygenic risk scores (PRSs) and carried out comparisons at the population and continental level. RESULTS: We observed the strongest differences among continental regions for the five top SNPs in chromosome 3. European, American, and South Asian populations showed similar LD patterns. Average PRSs in South Asian and American populations were consistently higher than those observed in Europeans. While PRS distributions were similar among South Asians, the American populations showed striking differences among them. CONCLUSIONS: Considering the caveats of PRS transferability across ethnicities, our analysis showed that American populations present the highest genetic risk score, hence potentially higher propensity, for COVID-19 severity. Independent validation is warranted with additional summary statistics and phenotype data.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/epidemiologia , Desequilíbrio de Ligação , Predisposição Genética para Doença , Índice de Gravidade de Doença , Frequência do Gene , Herança Multifatorial
4.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338673

RESUMO

Metabolic bone diseases cover a broad spectrum of disorders that share alterations in bone metabolism that lead to a defective skeleton, which is associated with increasing morbidity, disability, and mortality. There is a close connection between the etiology of metabolic bone diseases and genetic factors, with TP53 being one of the genes associated therewith. The single nucleotide polymorphism (SNP) Arg72Pro of TP53 is a genetic factor associated with several pathologies, including cancer, stroke, and osteoporosis. Here, we aim to analyze the influence of the TP53 Arg72Pro SNP on bone mass in humanized Tp53 Arg72Pro knock-in mice. This work reports on the influence of the TP53 Arg72Pro polymorphism in bone microarchitecture, OPG expression, and apoptosis bone status. The results show that the proline variant of the TP53 Arg72Pro polymorphism (Pro72-p53) is associated with deteriorated bone tissue, lower OPG/RANK ratio, and lower apoptosis in bone tissue. In conclusion, the TP53 Arg72Pro polymorphism modulates bone microarchitecture and may be a genetic biomarker that can be used to identify individuals with an increased risk of suffering metabolic bone alterations.


Assuntos
Doenças Ósseas Metabólicas , Proteína Supressora de Tumor p53 , Animais , Camundongos , Biomarcadores , Osso e Ossos , Estudos de Casos e Controles , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Humanos
5.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396997

RESUMO

This study explores the genetic factors associated with atypical femoral fractures (AFF), rare fractures associated with prolonged anti-resorptive therapy. AFF are fragility fractures that typically appear in the subtrochanteric or diaphyseal regions of the femur. While some cases resemble fractures in rare genetic bone disorders, the exact cause remains unclear. This study investigates 457 genes related to skeletal homeostasis in 13 AFF patients by exome sequencing, comparing the results with osteoporotic patients (n = 27) and Iberian samples from the 1000 Genomes Project (n = 107). Only one AFF case carried a pathogenic variant in the gene set, specifically in the ALPL gene. The study then examined variant accumulation in the gene set, revealing significantly more variants in AFF patients than in osteoporotic patients without AFF (p = 3.7 × 10-5), particularly in ACAN, AKAP13, ARHGEF3, P4HB, PITX2, and SUCO genes, all of them related to osteogenesis. This suggests that variant accumulation in bone-related genes may contribute to AFF risk. The polygenic nature of AFF implies that a complex interplay of genetic factors determines the susceptibility to AFF, with ACAN, SUCO, AKAP13, ARHGEF3, PITX2, and P4HB as potential genetic risk factors. Larger studies are needed to confirm the utility of gene set analysis in identifying patients at high risk of AFF during anti-resorptive therapy.


Assuntos
Conservadores da Densidade Óssea , Doenças Ósseas , Fraturas do Fêmur , Humanos , Fraturas do Fêmur/genética , Fêmur/patologia , Diáfises , Difosfonatos
6.
J Intern Med ; 293(6): 753-762, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36999651

RESUMO

BACKGROUND: Chronic hypophosphatemia can result from a variety of acquired disorders, such as malnutrition, intestinal malabsorption, hyperparathyroidism, vitamin D deficiency, excess alcohol intake, some drugs, or organ transplantation. Genetic disorders can be a cause of persistent hypophosphatemia, although they are less recognized. We aimed to better understand the prevalence of genetic hypophosphatemia in the population. METHODS: By combining retrospective and prospective strategies, we searched the laboratory database of 815,828 phosphorus analyses and included patients 17-55 years old with low serum phosphorus. We reviewed the charts of 1287 outpatients with at least 1 phosphorus result ≤2.2 mg/dL. After ruling out clear secondary causes, 109 patients underwent further clinical and analytical studies. Among them, we confirmed hypophosphatemia in 39 patients. After excluding other evident secondary causes, such as primary hyperparathyroidism and vitamin D deficiency, we performed a molecular analysis in 42 patients by sequencing the exonic and flanking intronic regions of a panel of genes related to rickets or hypophosphatemia (CLCN5, CYP27B1, dentin matrix acidic phosphoprotein 1, ENPP1, FAM20C, FGFR1, FGF23, GNAS, PHEX, SLC34A3, and VDR). RESULTS: We identified 14 index patients with hypophosphatemia and variants in genes related to phosphate metabolism. The phenotype of most patients was mild, but two patients with X-linked hypophosphatemia (XLH) due to novel PHEX mutations had marked skeletal abnormalities. CONCLUSION: Genetic causes should be considered in children, but also in adult patients with hypophosphatemia of unknown origin. Our data are consistent with the conception that XLH is the most common cause of genetic hypophosphatemia with an overt musculoskeletal phenotype.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Hipofosfatemia/genética , Hipofosfatemia/complicações , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fósforo , Fatores de Crescimento de Fibroblastos
7.
Calcif Tissue Int ; 112(3): 289-296, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36348061

RESUMO

Increased serum levels of alkaline phosphatase (ALP) are widely recognized as a biochemical marker of many disorders affecting the liver or bone. However, the approach for patients with low ALP phosphatase is not well-established. Low serum ALP is an epiphenomenon of many severe acute injuries and diseases. Persistently low serum ALP may be secondary to drug therapy (including antiresorptives) or a variety of acquired disorders, such as malnutrition, vitamin and mineral deficiencies, endocrine disorders, etc. Hypophosphatasia, due to pathogenic variants of the ALPL gene, which encodes tissue non-specific ALP, is the most common genetic cause of low serum ALP. Marked bone hypomineralization is frequent in severe pediatric-onset cases. However, adult forms of hypophosphatasia usually present with milder manifestations, such as skeletal pain, chondrocalcinosis, calcific periarthritis, dental problems, and stress fractures. The diagnostic approach to these patients is discussed. Measuring several ALP substrates, such as pyrophosphate, pyridoxal phosphate, or phosphoethanolamine, may help to establish enzyme deficiency. Gene analysis showing a pathogenic variant in ALPL may confirm the diagnosis. However, a substantial proportion of patients show normal results after sequencing ALPL exons. It is still unknown if those patients carry unidentified mutations in regulatory regions of ALPL, epigenetic changes, or abnormalities in other genes.


Assuntos
Fosfatase Alcalina , Hipofosfatasia , Adulto , Criança , Humanos , Fosfatase Alcalina/genética , Hipofosfatasia/genética , Mutação , Osso e Ossos , Éxons
8.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895147

RESUMO

Histiocytoses encompass a group of exceptionally rare disorders characterized by the abnormal infiltration of tissues by histocytes. Among these, Erdheim-Chester disease (ECD) stands out as a multisystem histiocytosis that typically affects bones and various other tissues. Historically, the treatment of ECD has been challenging. However, recent breakthroughs in our understanding, particularly the discovery of somatic mutations in the RAS-MAPK pathway, have opened new opportunities for targeted therapy in a significant subset of patients with ECD and other histiocytoses. In this report, we present the case of a patient with ECD harboring a previously unidentified microduplication in the NRAS gene in a small fraction of skin cells. This discovery played a pivotal role in tailoring an effective therapeutic approach involving kinase inhibitors downstream of NRAS. This case underscores the crucial role of deep sequencing of tissue samples in ECD, enabling the delivery of personalized targeted therapy to patients.


Assuntos
Doença de Erdheim-Chester , Humanos , Doença de Erdheim-Chester/tratamento farmacológico , Doença de Erdheim-Chester/genética , Proteínas Proto-Oncogênicas B-raf/genética , Mutação , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética
9.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569774

RESUMO

The evidence sustaining the regenerative properties of mesenchymal stem cells' (MSCs) secretome has prompted a paradigm change, where MSCs have shifted from being considered direct contributors to tissue regeneration toward being seen as cell factories for producing biotech medicines. We have previously designed a method to prime MSCs towards osteogenic differentiation by silencing the Wnt/ß-Catenin inhibitor Sfpr1. This approach produces a significant increase in bone formation in osteoporotic mice. In this current work, we set to investigate the contribution of the secretome from the MSCs where Sfrp1 has been silenced, to the positive effect seen on bone regeneration in vivo. The conditioned media (CM) of the murine MSCs line C3H10T1/2, where Sfrp1 has been transiently silenced (CM-Sfrp1), was found to induce, in vitro, an increase in the osteogenic differentiation of this same cell line, as well as a decrease of the expression of the Wnt inhibitor Dkk1 in murine osteocytes ex vivo. A reduction in the RANKL/OPG ratio was also detected ex vivo, suggesting a negative effect of CM-Sfrp1 on osteoclastogenesis. Moreover, this CM significantly increases the mineralization of human primary MSCs isolated from osteoportotic patients in vitro. Proteomic analysis identified enrichment of proteins involved in osteogenesis within the soluble and vesicular fractions of this secretome. Altogether, we demonstrate the pro-osteogenic potential of the secretome of MSCs primmed in this fashion, suggesting that this is a valid approach to enhance the osteo-regenerative properties of MSCs' secretome.


Assuntos
Osteogênese , Proteômica , Humanos , Animais , Camundongos , Osteogênese/genética , Secretoma , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Diferenciação Celular/genética
10.
Osteoporos Int ; 33(11): 2445-2448, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35840698

RESUMO

We present a family with a rare mutation of the LRP6 gene and for the first time provide evidence for its association with low bone mineral density. INTRODUCTION: The Wnt pathway plays a critical role in bone homeostasis. Pathogenic variants of the Wnt co-receptor LRP6 have been associated with abnormal skeletal phenotypes or increased risk of cardiovascular events. PATIENT AND METHODS: Here we report an index premenopausal patient and her family carrying a rare missense LRP6 pathogenic variant (rs141212743; 0.0002 frequency among Europeans). This variant has been previously associated with metabolic syndrome and atherosclerosis, in the presence of normal bone mineral density. However, the LRP6 variant was associated with low bone mineral density in this family, without evidence for association with serum lipid levels or cardiovascular events. CONCLUSION: Thus, this novel association shows that LRP6 pathogenic variants may be involved in some cases of early-onset osteoporosis, but the predominant effect, either skeletal or cardiovascular, may vary depending on the genetic background or other acquired factors.


Assuntos
Doenças Ósseas Metabólicas , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Densidade Óssea/genética , Feminino , Humanos , Lipídeos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mutação , Via de Sinalização Wnt
11.
Connect Tissue Res ; 63(3): 243-255, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33618587

RESUMO

PURPOSE: Human mesenchymal stem cells (MSCs) have the ability to differentiate into bone-forming osteoblasts. The aim of this study was to elucidate if MSCs from patients with OP show a senescent phenotype and explore their bone-forming ability in vivo. MATERIALS AND METHODS: MSCs from patients with OP and controls with osteoarthritis (OA) were implanted into the subcutaneous tissue of immunodeficient mice for histological analysis and expression of human genes by RT-PCR. The expression of senescence-associated phenotype (SASP) genes, as well as p16, p21, and galactosidase, was studied in cultures of MSCs. RESULTS: In vivo bone formation was evaluated in 103 implants (47 OP, 56 OA). New bone was observed in 45% of the implants with OP cells and 46% of those with OA cells (p = 0.99). The expression of several bone-related genes (collagen, osteocalcin, alkaline phosphatase, sialoprotein) was also similar in both groups. There were no differences between groups in SASP gene expression, p16, and p21 expression, or in senescence-associated galactosidase activity. CONCLUSION: Senescence markers and the osteogenic capacity in vivo of MSCs from patients with OP are not inferior to that of cells from controls of similar age with OA. This supports the interest of future studies to evaluate the potential use of autologous MSCs from OP patients in bone regeneration procedures.


Assuntos
Fraturas do Quadril , Células-Tronco Mesenquimais , Animais , Diferenciação Celular/genética , Células Cultivadas , Fraturas do Quadril/metabolismo , Humanos , Camundongos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética
12.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613479

RESUMO

The etiology of oculo-auriculo-vertebral spectrum (OAVS) is not well established. About half of patients show a positive family history. The etiology of familiar cases is unclear but appears genetically heterogeneous. This motivated us to report a case of OAVS with microtia, ptosis, facial microsomy, and fusion of vertebral bodies associated with a novel genetic etiology, including a deletion at 1p36.12-13. This case report expands on the genetic etiology of OAVS. Furthermore, it also expands the clinical manifestations of patients with interstitial deletions of the de 1p36.12-13 region.


Assuntos
Síndrome de Goldenhar , Humanos , Síndrome de Goldenhar/genética
13.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361534

RESUMO

Hypoxia may be associated with alterations in bone remodeling, but the published results are contradictory. The aim of this study was to characterize the bone morphometry changes subject to hypoxia for a better understanding of the bone response to hypoxia and its possible clinical consequences on the bone metabolism. This study analyzed the bone morphometry parameters by micro-computed tomography (µCT) in rat and guinea pig normobaric hypoxia models. Adult male and female Wistar rats were exposed to chronic hypoxia for 7 and 15 days. Additionally, adult male guinea pigs were exposed to chronic hypoxia for 15 days. The results showed that rats exposed to chronic constant and intermittent hypoxic conditions had a worse trabecular and cortical bone health than control rats (under a normoxic condition). Rats under chronic constant hypoxia were associated with a more deteriorated cortical tibia thickness, trabecular femur and tibia bone volume over the total volume (BV/TV), tibia trabecular number (Tb.N), and trabecular femur and tibia bone mineral density (BMD). In the case of chronic intermittent hypoxia, rats subjected to intermittent hypoxia had a lower cortical femur tissue mineral density (TMD), lower trabecular tibia BV/TV, and lower trabecular thickness (Tb.Th) of the tibia and lower tibia Tb.N. The results also showed that obese rats under a hypoxic condition had worse values for the femur and tibia BV/TV, tibia trabecular separation (Tb.Sp), femur and tibia Tb.N, and BMD for the femur and tibia than normoweight rats under a hypoxic condition. In conclusion, hypoxia and obesity may modify bone remodeling, and thus bone microarchitecture, and they might lead to reductions in the bone strength and therefore increase the risk of fragility fracture.


Assuntos
Densidade Óssea , Tíbia , Ratos , Cobaias , Masculino , Feminino , Animais , Densidade Óssea/fisiologia , Microtomografia por Raio-X , Ratos Sprague-Dawley , Ratos Wistar , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Obesidade , Modelos Animais , Hipóxia
14.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614129

RESUMO

To better understand the causes of hypophosphatemia in children, we evaluated all serum phosphate tests performed in a tertiary hospital with unexpected but persistent temporary or isolated hypophosphatemia over an 18 year period. We collected 29,279 phosphate tests from 21,398 patients, of which 268 (1.2%) had at least one result showing hypophosphatemia. We found that endocrinopathies (n = 60), tumors (n = 10), and vitamin D deficiency (n = 3) were the medical conditions most commonly associated with mild hypophosphatemia, but in many patients the cause was unclear. Among patients with endocrinopathies, those with diabetes mellitus were found to have lower mean serum phosphate levels (mean 3.4 mg/dL) than those with short stature (3.7 mg/dL) or thyroid disorders (3.7 mg/dL). In addition, we found a correlation between glycemia and phosphatemia in patients with diabetes. However, despite the potential relevance of monitoring phosphate homeostasis and the underlying etiologic mechanisms, renal phosphate losses were estimated in less than 5% of patients with hypophosphatemia. In the pediatric age group, malignancies, hypovitaminosis D, and endocrine disorders, mostly diabetes, were the most common causes of hypophosphatemia. This real-world study also shows that hypophosphatemia is frequently neglected and inadequately evaluated by pediatricians, which emphasizes the need for more education and awareness about this condition to prevent its potentially deleterious consequences.


Assuntos
Diabetes Mellitus , Hipofosfatemia , Raquitismo , Humanos , Criança , Hipofosfatemia/etiologia , Fosfatos , Homeostase , Raquitismo/complicações
15.
Rep Pract Oncol Radiother ; 26(2): 163-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211765

RESUMO

BACKGROUND: Hyperbaric oxygen therapy (HBOT) is useful in the treatment of complications due to radiotherapy in patients with neoplasm. Its effects on bone metabolism are unclear. In our study, we analyzed the effects of HBOT on bone remodeling in oncological patients with radiotherapy. MATERIALS AND METHODS: Prospective clinical study in 23 patients with neoplasms undergoing treatment with HBOT due to complications of radiotherapy (hemorrhagic cystitis, proctitis or radionecrosis) and 25 patients with chronic anal fissure. The average number of HBOT sessions was 20 ± 5 (100% oxygen, 2.3 atmospheres and 90 min per day). Serum levels of aminoterminal propeptide of type I collagen (P1NP), C terminal telopeptide of type I collagen (CTX), alkaline phosphatase (AP), 25hydroxyvitamin D (25-OHD), parathyroid hormone (PTH), were measured at 3 time points: T0 (before beginning HBOT), T1 (at the end of HBOT) and T2 (6 months after HBOT). RESULTS: At baseline, the patients with neoplasm have higher bone turnover than those with anal fissure. These differences were 41% in CTX (0.238 ± 0.202 ng/mL in neoplasm and 0.141 ± 0.116 ng/mL in fissure; p = 0.04), 30% for PTH (46 ± 36 pg/mL in neoplasm and 32 ± 17 pg/mL in fissure; p = 0.04) and 15% for alkaline phosphatase (80 ± 24 U/L in neoplasm and 68 ± 16 U/L in fissure; p = 0.04). In the group with neoplasm, the values of P1NP decreased 6% after HBOT (T0: 49 ± 31 ng/mL, T2: 46 ± 12 ng/mL; p = 0.03). Also, there were non-significant decreases in PTH (-34%) and CTX (-30%). CONCLUSIONS: Patients with neoplasm and complications with radiotherapy have an increase in bone remodeling that may be diminished after HBOT.

16.
FASEB J ; 32(5): 2878-2890, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401593

RESUMO

Parathyroid hormone (PTH) affects the skeleton by acting on osteocytes (Ots) in bone through yet unclear mechanisms. We report that matrix metalloproteinase 14 (MMP14) expression/activity are increased in bones from mice with genetic constitutive activation (ca) of the PTH receptor 1 (PTH1R) in Ots (caPTH1ROt) and in bones from mice exposed to elevated PTH levels but not in mice lacking [conditional knockout (cKO)] the PTH1R in Ots (cKOPTH1ROt). Furthermore, PTH upregulates MMP14 in human bone cultures and in Ot-enriched bones from floxed control mice but not from cKOPTH1ROt mice. MMP14 activity increases soluble receptor activator of NF-κΒ ligand production, which in turn, stimulates osteoclast differentiation and resorption. Pharmacologic inhibition of MMP14 activity reduced the high bone remodeling exhibited by caPTH1ROt mice or induced by chronic PTH elevation and decreased bone resorption but allowed full stimulation of bone formation induced by PTH injections, thereby potentiating bone gain. Thus, MMP14 is a new member of the intricate gene network activated in Ots by PTH1R signaling that can be targeted to adjust the skeletal responses to PTH in favor of bone preservation.-Delgado-Calle, J., Hancock, B., Likine, E. F., Sato, A. Y., McAndrews, K., Sanudo, C., Bruzzaniti, A., Riancho, J. A., Tonra, J. R., Bellido, T. MMP14 is a novel target of PTH signaling in osteocytes that controls resorption by regulating soluble RANKL production.


Assuntos
Reabsorção Óssea/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Osteócitos/metabolismo , Hormônio Paratireóideo/metabolismo , Ligante RANK/biossíntese , Transdução de Sinais/fisiologia , Animais , Reabsorção Óssea/genética , Células Cultivadas , Redes Reguladoras de Genes/fisiologia , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Knockout , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteócitos/citologia , Osteogênese/fisiologia , Hormônio Paratireóideo/genética , Ligante RANK/genética , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo
17.
Genome Res ; 25(1): 27-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25271306

RESUMO

In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors.


Assuntos
Envelhecimento/genética , Metilação de DNA , DNA/genética , Células-Tronco/citologia , Adolescente , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Criança , Pré-Escolar , Cromatina/genética , Epigênese Genética , Histonas/genética , Humanos , Análise em Microsséries , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Análise de Sequência de DNA , Gêmeos Monozigóticos , Adulto Jovem
18.
Ann Rheum Dis ; 77(3): 378-385, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29170203

RESUMO

OBJECTIVES: To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS: Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS: A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION: We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism.


Assuntos
Cromossomos Humanos Par 2/genética , Fraturas por Osteoporose/genética , Fraturas da Coluna Vertebral/genética , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Pós-Menopausa , Locos de Características Quantitativas
19.
Curr Osteoporos Rep ; 16(3): 246-255, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29574535

RESUMO

PURPOSE OF REVIEW: Epigenetic mechanisms modify gene activity in a stable manner without altering DNA sequence. They participate in the adaptation to the environment, as well as in the pathogenesis of common complex disorders. We provide an overview of the role of epigenetic mechanisms in bone biology and pathology. RECENT FINDINGS: Extensive evidence supports the involvement of epigenetic mechanisms (DNA methylation, post-translational modifications of histone tails, and non-coding RNAs) in the differentiation of bone cells and mechanotransduction. A variety of epigenetic abnormalities have been described in patients with osteoporosis, osteoarthritis, and skeletal cancers, but their actual pathogenetic roles are still unclear. A few drugs targeting epigenetic marks have been approved for neoplastic disorders, and many more are being actively investigated. Advances in the field of epigenetics underscore the complex interactions between genetic and environmental factors as determinants of osteoporosis and other common disorders. Likewise, they help to explain the mechanisms by which prenatal and post-natal external factors, from nutrition to psychological stress, impact our body and influence the risk of later disease.


Assuntos
Neoplasias Ósseas/genética , Diferenciação Celular/genética , Epigênese Genética , Osteoartrite/genética , Osteoporose/genética , Metilação de DNA , Histonas/metabolismo , Humanos , Mecanotransdução Celular , Osteoblastos , Osteócitos , Osteogênese , Processamento de Proteína Pós-Traducional , RNA não Traduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA