Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Exp Parasitol ; 247: 108490, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36809831

RESUMO

The discovery and development of new drugs for the treatment of Chagas disease is urgent due to the high toxicity and low cure efficacy, mainly during the chronic phase of this disease. Other chemotherapeutic approaches for Chagas disease treatment are being researched and require screening assays suitable for evaluating the effectivity of new biologically active compounds. This study aims to evaluate a functional assay using the internalization of epimastigotes forms of Trypanosoma cruzi by human peripheral blood leukocytes from healthy volunteers and analyses by flow cytometry of cytotoxicity, anti-T. cruzi activity, and immunomodulatory effect of benznidazole, ravuconazole, and posaconazole. The culture supernatant was used to measure cytokines (IL-1-ß, IL-6, INF-γ, TNF and IL-10) and chemokines (MCP-1/CCL2, CCL5/RANTES and CXCL8/IL-8). The data showed a reduction in the internalization of T. cruzi epimastigote forms treated with ravuconazole, demonstrating its potential anti-T. cruzi activity. In addition, an increased amount of IL-10 and TNF cytokines was observed in the supernatant of cultures upon the addition of the drug, mainly IL-10 in the presence of benznidazole, ravuconazole and posaconazole, and TNF in the presence of ravuconazole and posaconazole. Moreover, the results revealed a decrease in the MCP-1/CCL2 index in cultures in the presence of benznidazole, ravuconazole, and posaconazole. A decrease in the CCL5/RANTES and CXCL8/IL-8 index in cultures with BZ, when compared to the culture without drugs, was also observed. In conclusion, the innovative functional test proposed in this study may be a valuable tool as a confirmatory test for selecting promising compounds identified in prospecting programs for new drugs for Chagas disease treatment.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Interleucina-10 , Interleucina-8 , Citometria de Fluxo , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Doença de Chagas/tratamento farmacológico , Citocinas , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
2.
Exp Parasitol ; 216: 107940, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32562606

RESUMO

Therapeutic options for the treatment of leishmaniasis are insufficient and need improvements owing to their low efficiency and high toxicity as well as the emergence of resistant strains. The limited number of new drugs for neglected diseases and lack of innovation in your development are still challenges. In this context, the process of discovery and development of biological assays play a pivotal role for the identification of bioactive compounds. The assays currently used for screening of drugs with cytotoxic activity against Leishmania parasites, include different processes that utilize intact parasite (free or intracellular) or specific enzymes of metabolism as a target cell. These assays allow the screening of large numbers of samples followed by more detailed secondary confirmatory assays to confirm the observed activity and assess their toxicity. In the present study, we described the development of a new functional and more complete assay that enables simultaneous assessment of potential anti-Leishmania compounds through evaluation of internalization of fluorescein-labeled L. braziliensis promastigotes by human peripheral blood monocytes and their cytotoxicity by flow cytometry. We standardized the conditions for parasite labeling to achieve better phagocytosis analysis by setting the ratio of number of parasites per cell as 1 to 2, at incubation time of 6h. The cytotoxicity assessment was performed by the quantification of cells undergoing early/late apoptosis and necrosis using a double labelling platform employing 7AAD for late apoptosis and necrosis analysis and Annexin-V for early apoptosis evaluation. Hemolysis analysis was an additional parameter to test cytotoxicity. Two drugs used on clinic (Amphotericin B and Glucantime®) were used to validate the proposed methodology, and the assay was able to detect their known leishmanicidal activity and immunotoxicity properties. This new predictive assay will contribute to the development of translational medicine strategies in drug discovery for neglected diseases such as leishmaniasis.


Assuntos
Alternativas aos Testes com Animais/métodos , Antiprotozoários/toxicidade , Citometria de Fluxo/métodos , Leishmania/efeitos dos fármacos , Doenças Negligenciadas/tratamento farmacológico , Adulto , Anfotericina B/farmacologia , Anfotericina B/toxicidade , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Humanos , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Leucócitos/efeitos dos fármacos , Leucócitos/parasitologia , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Antimoniato de Meglumina/toxicidade , Microscopia Confocal , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/parasitologia , Fatores de Tempo , Adulto Jovem
3.
Infect Immun ; 84(9): 2439-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27297388

RESUMO

Coxiella burnetii is a Gram-negative bacterium that causes Q fever in humans. Q fever is an atypical pneumonia transmitted through inhalation of contaminated aerosols. In mammalian lungs, C. burnetii infects and replicates in several cell types, including alveolar macrophages (AMs). The innate immunity and signaling pathways operating during infection are still poorly understood, in part because of the lack of relevant host cell models for infection in vitro In the study described here, we investigated and characterized the infection of primary murine AMs by C. burnetii phase II in vitro Our data reveal that AMs show a pronounced M2 polarization and are highly permissive to C. burnetii multiplication in vitro Murine AMs present an increased susceptibility to infection in comparison to primary bone marrow-derived macrophages. AMs support more than 2 logs of bacterial replication during 12 days of infection in culture, similar to highly susceptible host cells, such as Vero and THP-1 cells. As a proof of principle that AMs are useful for investigation of C. burnetii replication, we performed experiments with AMs from Nos2(-/-) or Ifng(-/-) mice. In the absence of gamma interferon and nitric oxide synthase 2 (NOS2), AMs were significantly more permissive than wild-type cells. In contrast, AMs from Il4(-/-) mice were more restrictive to C. burnetii replication, supporting the importance of M2 polarization for the permissiveness of AMs to C. burnetii replication. Collectively, our data account for understanding the high susceptibility of alveolar macrophages to bacterial replication and support the use of AMs as a relevant model of C. burnetii growth in primary macrophages.


Assuntos
Coxiella burnetii/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Animais , Células Cultivadas , Imunidade Inata/imunologia , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/imunologia , Febre Q/imunologia , Febre Q/microbiologia , Transdução de Sinais/imunologia
4.
Infect Immun ; 84(4): 998-1015, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26787725

RESUMO

Coxiella burnetii replicates within permissive host cells by employing a Dot/Icm type IV secretion system (T4SS) to translocate effector proteins that direct the formation of a parasitophorous vacuole. C57BL/6 mouse macrophages restrict the intracellular replication of the C. burnetii. Nine Mile phase II (NMII) strain. However, eliminating Toll-like receptor 2 (TLR2) permits bacterial replication, indicating that the restriction of bacterial replication is immune mediated. Here, we examined whether additional innate immune pathways are employed by C57BL/6 macrophages to sense and restrict NMII replication. In addition to the known role of TLR2 in detecting and restricting NMII infection, we found that TLR4 also contributes to cytokine responses but is not required to restrict bacterial replication. Furthermore, the TLR signaling adaptors MyD88 and Trif are required for cytokine responses and restricting bacterial replication. The C. burnetii NMII T4SS translocates bacterial products into C57BL/6 macrophages. However, there was little evidence of cytosolic immune sensing of NMII, as there was a lack of inflammasome activation, T4SS-dependent cytokine responses, and robust type I interferon (IFN) production, and these pathways were not required to restrict bacterial replication. Instead, endogenous tumor necrosis factor (TNF) produced upon TLR sensing of C. burnetii NMII was required to control bacterial replication. Therefore, our findings indicate a primary role for TNF produced upon immune detection of C. burnetii NMII by TLRs, rather than cytosolic PRRs, in enabling C57BL/6 macrophages to restrict bacterial replication.


Assuntos
Coxiella burnetii/fisiologia , Citosol , Macrófagos/microbiologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Proteínas Quinases p38 Ativadas por Mitógeno
5.
Int Immunopharmacol ; 110: 108952, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35716482

RESUMO

Visceral leishmaniasis (VL) is an infectious disease caused by Leishmania infantum (L. infantum). Currently, there are no vaccines and/or prophylactic therapies against VL, and the recentpharmacological approaches come from the drug repositioning strategy. Here, we evaluated the anticancer drug pamidronate (PAM) to identify a new therapeutic option for the treatment of human VL. We assessed its in vitro antileishmanial activity against the promastigote and amastigote forms of L. infantum by evaluating cell cytotoxicity. The antileishmanial and immunomodulatory activities were assessed using human peripheral blood leukocytes ex vivo. PAM induced the formation of vacuoles in the cytoplasm of the promastigotes and alterations in the morphology of the kinetoplast and mitochondria in vitro, which indicates anti-promastigote activity. PAM also reduced the number of infected macrophages and intracellular amastigotes in a concentration-dependent manner, with cell viability above 70%. In ex vivo, PAM reduced the internalized forms of L. infantum in the classical monocyte subpopulation. Furthermore, it enhanced IL-12 and decreased IL-10 and TGF-ß by monocytes and neutrophils. Increased IFN-γ and TNF levels for CD8- and CD8+ T lymphocytes and B lymphocytes, respectively, were observed after the treatment with PAM, as well as a reduction in IL-10 by the lymphocyte subpopulations evaluated. Taken together, our results suggest that PAM may be eligible as a potential therapeutic alternative for drug repurposing to treat human visceral leishmaniasis.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Interleucina-10/uso terapêutico , Leishmaniose/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Pamidronato
6.
ACS Omega ; 5(6): 2939-2946, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32095716

RESUMO

Triethylphosphinegold(I) complexes [Au(HL1)P(CH2CH3)3]PF6 (1), [Au(HL2)P(CH2CH3)3]PF6 (2), and [Au(HL3)P(CH2CH3)3]PF6 (3) were obtained with (E)-2-(1-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ylidene)hydrazinecarbothioamide (HL1), (E)-N-methyl-2-(1-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ylidene)hydrazinecarbothioamide (HL2), and (E)-2-(1-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ylidene)-N-phenylhydrazinecarbothioamide (HL3). All compounds were assayed for their cytotoxic activities against HCT-116 colorectal carcinoma cells under normoxia and hypoxia conditions and against nonmalignant HEK-293 human embryonic kidney cells under normoxia conditions. The thiosemicarbazone ligands HL1-HL3 were inactive against HCT-116 cells under hypoxia but while HL3 was inactive, HL1 and HL2 proved to be cytotoxic to both cell lineages under normoxia conditions. Complexes (1-3) and the triethylphosphinegod(I) precursor proved to be active against both cell lineages in normoxia as well as in hypoxia. While 1 and 3 revealed to be active against HEK-293 and HCT-116 cells, being approximately as active against HCT-116 cells in normoxia as under hypoxia, complex (2) proved to be more active against HCT-116 cells under hypoxia than under normoxia conditions, and more active against HCT-116 cells than against the nonmalignant HEK-293 cells, with the selectivity index, calculated as SI = IC50HEK-293/IC50HCT-116hypoxia, equal to 3.7, similar to the value obtained for the control drug tirapazamine (tirapazamine (TPZ), SI = 4). Although the compounds showed distinct cytotoxic activities, the electrochemical behaviors of HL1-HL3 were very similar, as were the behaviors of complexes (1-3). Complex (2) deserves special interest since it was significantly more active under hypoxia than under normoxia conditions. Hence, in this case, selective reduction of the nitro group in a low oxygen pressure environment, resulting in toxic reactive oxygen species (ROS) and damage to DNA or other biomolecules, might operate, while for the remaining compounds, other modes of action probably occur.

7.
Cell Rep ; 20(4): 794-805, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28746866

RESUMO

Inflammasomes are multimeric protein complexes that initiate inflammatory cascades. Their activation is a hallmark of many infectious or inflammatory diseases. Their composition and activity are specified by proinflammatory stimuli. For example, the NLRP3 inflammasome is activated in response to cell damage and K+ efflux, whereas the AIM2 inflammasome is activated in response to cytosolic DNA. We used Legionella pneumophila, an intracellular bacterial pathogen that activates multiple inflammasomes, to elucidate the molecular mechanisms regulating inflammasome activation during infection. Upon infection, the AIM2 inflammasome engaged caspase-1 to induce pore formation in the cell membrane, which then caused K+-efflux-mediated activation of NLRP3. Thus, the AIM2 inflammasome amplifies signals of infection, triggering noncanonical activation of NLRP3. During infection, AIM2 and caspase-11 induced membrane damage, which was sufficient and essential for activating the NLRP3 inflammasome. Our data reveal that different inflammasomes regulate one another's activity to ensure an effective immune response to infection.


Assuntos
Caspase 1/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Caspase 1/genética , Caspases/metabolismo , Caspases Iniciadoras , Proteínas de Ligação a DNA/genética , Feminino , Flagelina/genética , Flagelina/metabolismo , Inflamassomos/genética , Inflamassomos/imunologia , Legionella pneumophila/imunologia , Legionella pneumophila/patogenicidade , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Potássio/metabolismo
8.
Nat Commun ; 6: 10205, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26687278

RESUMO

Coxiella burnetii is a highly infectious bacterium that promotes its own replication in macrophages by inhibiting several host cell responses. Here, we show that C. burnetii inhibits caspase-1 activation in primary mouse macrophages. By using co-infection experiments, we determine that the infection of macrophages with C. burnetii inhibits the caspase-11-mediated non-canonical activation of the NLRP3 inflammasome induced by subsequent infection with Escherichia coli or Legionella pneumophila. Genetic screening using flagellin mutants of L. pneumophila as a surrogate host, reveals a novel C. burnetii gene (IcaA) involved in the inhibition of caspase activation. Expression of IcaA in L. pneumophila inhibited the caspase-11 activation in macrophages. Moreover, icaA(-) mutants of C. burnetii failed to suppress the caspase-11-mediated inflammasome activation induced by L. pneumophila. Our data reveal IcaA as a novel C. burnetii effector protein that is secreted by the Dot/Icm type IV secretion system and interferes with the caspase-11-induced, non-canonical activation of the inflammasome.


Assuntos
Proteínas de Bactérias/imunologia , Coxiella burnetii/imunologia , Inflamassomos/imunologia , Febre Q/imunologia , Sistemas de Secreção Tipo IV/imunologia , Animais , Proteínas de Bactérias/genética , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Coxiella burnetii/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Febre Q/genética , Febre Q/microbiologia , Sistemas de Secreção Tipo IV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA