Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Pathog ; 18(6): e1010646, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731839

RESUMO

Prions are infectious agents that replicate through the autocatalytic misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc) causing fatal neurodegenerative diseases in humans and animals. Prions exist as strains, which are encoded by conformational variants of PrPSc. The transmissibility of prions depends on the PrPC sequence of the recipient host and on the incoming prion strain, so that some animal prion strains are more contagious than others or are transmissible to new species, including humans. Nor98/atypical scrapie (AS) is a prion disease of sheep and goats reported in several countries worldwide. At variance with classical scrapie (CS), AS is considered poorly contagious and is supposed to be spontaneous in origin. The zoonotic potential of AS, its strain variability and the relationships with the more contagious CS strains remain largely unknown. We characterized AS isolates from sheep and goats by transmission in ovinised transgenic mice (tg338) and in two genetic lines of bank voles, carrying either methionine (BvM) or isoleucine (BvI) at PrP residue 109. All AS isolates induced the same pathological phenotype in tg338 mice, thus proving that they encoded the same strain, irrespective of their geographical origin or source species. In bank voles, we found that the M109I polymorphism dictates the susceptibility to AS. BvI were susceptible and faithfully reproduced the AS strain, while the transmission in BvM was highly inefficient and was characterized by a conformational change towards a CS-like prion strain. Sub-passaging experiments revealed that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible animals. These findings add new clues for a better comprehension of strain selection dynamics in prion infections and have wider implications for understanding the origin of contagious prion strains, such as CS.


Assuntos
Príons , Scrapie , Aminoácidos , Animais , Arvicolinae/genética , Arvicolinae/metabolismo , Suscetibilidade a Doenças , Cabras/metabolismo , Camundongos , Camundongos Transgênicos , Permissividade , Proteínas Priônicas/genética , Príons/metabolismo , Scrapie/genética , Ovinos
2.
Proc Natl Acad Sci U S A ; 117(49): 31417-31426, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229531

RESUMO

Chronic wasting disease (CWD) is a relentless epidemic disorder caused by infectious prions that threatens the survival of cervid populations and raises increasing public health concerns in North America. In Europe, CWD was detected for the first time in wild Norwegian reindeer (Rangifer tarandus) and moose (Alces alces) in 2016. In this study, we aimed at comparing the strain properties of CWD prions derived from different cervid species in Norway and North America. Using a classical strain typing approach involving transmission and adaptation to bank voles (Myodes glareolus), we found that prions causing CWD in Norway induced incubation times, neuropathology, regional deposition of misfolded prion protein aggregates in the brain, and size of their protease-resistant core, different from those that characterize North American CWD. These findings show that CWD prion strains affecting Norwegian cervids are distinct from those found in North America, implying that the highly contagious North American CWD prions are not the proximate cause of the newly discovered Norwegian CWD cases. In addition, Norwegian CWD isolates showed an unexpected strain variability, with reindeer and moose being caused by different CWD strains. Our findings shed light on the origin of emergent European CWD, have significant implications for understanding the nature and the ecology of CWD in Europe, and highlight the need to assess the zoonotic potential of the new CWD strains detected in Europe.


Assuntos
Arvicolinae/fisiologia , Príons/metabolismo , Doença de Emaciação Crônica/epidemiologia , Adaptação Fisiológica , Animais , Encéfalo/patologia , Degeneração Neural/complicações , Degeneração Neural/patologia , América do Norte/epidemiologia , Noruega/epidemiologia , Fenótipo , Especificidade da Espécie , Doença de Emaciação Crônica/complicações , Doença de Emaciação Crônica/transmissão
3.
Brain ; 143(5): 1512-1524, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32303068

RESUMO

Prions are transmissible agents causing lethal neurodegenerative diseases that are composed of aggregates of misfolded cellular prion protein (PrPSc). Despite non-fibrillar oligomers having been proposed as the most infectious prion particles, prions purified from diseased brains usually consist of large and fibrillar PrPSc aggregates, whose protease-resistant core (PrPres) encompasses the whole C-terminus of PrP. In contrast, PrPSc from Gerstmann-Sträussler-Scheinker disease associated with alanine to valine substitution at position 117 (GSS-A117V) is characterized by a small protease-resistant core, which is devoid of the C-terminus. We thus aimed to investigate the role of this unusual PrPSc in terms of infectivity, strain characteristics, and structural features. We found, by titration in bank voles, that the infectivity of GSS-A117V is extremely high (109.3 ID50 U/g) and is resistant to treatment with proteinase K (109.0 ID50 U/g). We then purified the proteinase K-resistant GSS-A117V prions and determined the amount of infectivity and PrPres in the different fractions, alongside the morphological characteristics of purified PrPres aggregates by electron microscopy. Purified pellet fractions from GSS-A117V contained the expected N- and C-terminally cleaved 7 kDa PrPres, although the yield of PrPres was low. We found that this low yield depended on the low density/small size of GSS-A117V PrPres, as it was mainly retained in the last supernatant fraction. All fractions were highly infectious, thus confirming the infectious nature of the 7 kDa PrPres, with infectivity levels that directly correlated with the PrPres amount detected. Finally, electron microscopy analysis of these fractions showed no presence of amyloid fibrils, but only very small and indistinct, non-fibrillar PrPresparticles were detected and confirmed to contain PrP via immunogold labelling. Our study demonstrates that purified aggregates of 7 kDa PrPres, spanning residues ∼90-150, are highly infectious oligomers that encode the biochemical and biological strain features of the original sample. Overall, the autocatalytic behaviour of the prion oligomers reveals their role in the propagation of neurodegeneration in patients with Gerstmann-Sträussler-Scheinker disease and implies that the C-terminus of PrPSc is dispensable for infectivity and strain features for this prion strain, uncovering the central PrP domain as the minimal molecular component able to encode infectious prions. These findings are consistent with the hypothesis that non-fibrillar prion particles are highly efficient propagators of disease and provide new molecular and morphological constraints on the structure of infectious prions.


Assuntos
Doença de Gerstmann-Straussler-Scheinker/transmissão , Proteínas PrPSc/química , Proteínas PrPSc/isolamento & purificação , Proteínas PrPSc/patogenicidade , Animais , Arvicolinae , Humanos
4.
Emerg Infect Dis ; 24(6): 1029-1036, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29652245

RESUMO

Prions cause fatal and transmissible neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in small ruminants, and bovine spongiform encephalopathy (BSE). After the BSE epidemic, and the associated human infections, began in 1996 in the United Kingdom, general concerns have been raised about animal prions. We detected a prion disease in dromedary camels (Camelus dromedarius) in Algeria. Symptoms suggesting prion disease occurred in 3.1% of dromedaries brought for slaughter to the Ouargla abattoir in 2015-2016. We confirmed diagnosis by detecting pathognomonic neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues from 3 symptomatic animals. Prion detection in lymphoid tissues is suggestive of the infectious nature of the disease. PrPSc biochemical characterization showed differences with BSE and scrapie. Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Camelus , Doenças Priônicas/veterinária , Argélia/epidemiologia , Doenças dos Animais/genética , Animais , Biópsia , Bovinos , Encefalopatia Espongiforme Bovina/epidemiologia , Imuno-Histoquímica , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Análise de Sequência de DNA , Zoonoses/epidemiologia
5.
PLoS Pathog ; 12(11): e1006016, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27880822

RESUMO

It is widely known that prion strains can mutate in response to modification of the replication environment and we have recently reported that prion mutations can occur in vitro during amplification of vole-adapted prions by Protein Misfolding Cyclic Amplification on bank vole substrate (bvPMCA). Here we exploited the high efficiency of prion replication by bvPMCA to study the in vitro propagation of natural scrapie isolates. Although in vitro vole-adapted PrPSc conformers were usually similar to the sheep counterpart, we repeatedly isolated a PrPSc mutant exclusively when starting from extremely diluted seeds of a single sheep isolate. The mutant and faithful PrPSc conformers showed to be efficiently autocatalytic in vitro and were characterized by different PrP protease resistant cores, spanning aa ∼155-231 and ∼80-231 respectively, and by different conformational stabilities. The two conformers could thus be seen as different bona fide PrPSc types, putatively accounting for prion populations with different biological properties. Indeed, once inoculated in bank vole the faithful conformer was competent for in vivo replication while the mutant was unable to infect voles, de facto behaving like a defective prion mutant. Overall, our findings confirm that prions can adapt and evolve in the new replication environments and that the starting population size can affect their evolutionary landscape, at least in vitro. Furthermore, we report the first example of "authentic" defective prion mutant, composed of brain-derived PrPC and originating from a natural scrapie isolate. Our results clearly indicate that the defective mutant lacks of some structural characteristics, that presumably involve the central region ∼90-155, critical for infectivity but not for in vitro replication. Finally, we propose a molecular mechanism able to account for the discordant in vitro and in vivo behavior, suggesting possible new paths for investigating the molecular bases of prion infectivity.


Assuntos
Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Scrapie/metabolismo , Animais , Arvicolinae , Western Blotting , Mutação , Proteínas PrPSc/isolamento & purificação , Conformação Proteica , Ovinos
6.
PLoS Pathog ; 9(3): e1003219, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23505374

RESUMO

In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with mean survival times ranging from 156 to 281 days post inoculation. Subsequent passages in Bv109I allowed us to isolate from all CWD sources the same vole-adapted CWD strain (Bv(109I)CWD), typified by unprecedented short incubation times of 25-28 days and survival times of ∼35 days. Neuropathological and molecular characterisation of Bv(109I)CWD showed that the classical features of mammalian prion diseases were all recapitulated in less than one month after intracerebral inoculation. Bv(109I)CWD was characterised by a mild and discrete distribution of spongiosis and relatively low levels of protease-resistant PrP(Sc) (PrP(res)) in the same brain regions. Despite the low PrP(res) levels and the short time lapse available for its accumulation, end-point titration revealed that brains from terminally-ill voles contained up to 10(8,4) i.c. ID50 infectious units per gram. Bv(109I)CWD was efficiently replicated by protein misfolding cyclic amplification (PMCA) and the infectivity faithfully generated in vitro, as demonstrated by the preservation of the peculiar Bv(109I)CWD strain features on re-isolation in Bv109I. Overall, we provide evidence that the same CWD strain was isolated in Bv109I from the three-cervid species. Bv(109I)CWD showed unique characteristics of "virulence", low PrP(res) accumulation and high infectivity, thus providing exceptional opportunities to improve basic knowledge of the relationship between PrP(Sc), neurodegeneration and infectivity.


Assuntos
Arvicolinae , Príons , Doença de Emaciação Crônica/metabolismo , Doença de Emaciação Crônica/transmissão , Animais , Encéfalo/patologia , Dobramento de Proteína , Doença de Emaciação Crônica/patologia
7.
Biomolecules ; 13(5)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37238627

RESUMO

Reactive astrogliosis is one of the pathological hallmarks of prion diseases. Recent studies highlighted the influence of several factors on the astrocyte phenotype in prion diseases, including the brain region involved, the genotype backgrounds of the host, and the prion strain. Elucidating the influence of prion strains on the astrocyte phenotype may provide crucial insights for developing therapeutic strategies. Here, we investigated the relationship between prion strains and astrocyte phenotype in six human- and animal-vole-adapted strains characterized by distinctive neuropathological features. In particular, we compared astrocyte morphology and astrocyte-associated PrPSc deposition among strains in the same brain region, the mediodorsal thalamic nucleus (MDTN). Astrogliosis was detected to some extent in the MDTN of all analyzed voles. However, we observed variability in the morphological appearance of astrocytes depending on the strain. Astrocytes displayed variability in thickness and length of cellular processes and cellular body size, suggesting strain-specific phenotypes of reactive astrocytes. Remarkably, four out of six strains displayed astrocyte-associated PrPSc deposition, which correlated with the size of astrocytes. Overall, these data show that the heterogeneous reactivity of astrocytes in prion diseases depends at least in part on the infecting prion strains and their specific interaction with astrocytes.


Assuntos
Doenças Priônicas , Príons , Animais , Humanos , Príons/metabolismo , Astrócitos/metabolismo , Arvicolinae/genética , Arvicolinae/metabolismo , Gliose/patologia , Doenças Priônicas/patologia , Encéfalo/metabolismo
8.
Res Vet Sci ; 145: 50-53, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35168109

RESUMO

Skin biopsies from 20 Apennine brown bears (Ursus arctos marsicanus), 17 of which displaying skin lesions, were investigated by histopathology. Different degrees of dermatitis characterized by folliculitis and furunculosis accompanied by epidermal hyperplasia and epidermal and follicular hyperkeratosis were detected. In the most severe lesions, the superimposition of traumatic wounds, probably self-induced by scratching, was observed. In 8 out of 17 (47.0%) affected bears, cross- and longitudinally-sectioned nematode larvae were present within the lumen of hair follicles, whose localization and morphological characteristics were consistent with Pelodera strongyloides. P. strongyloides is a free-living saprophytic nematode whose third-stage larvae can invade the skin causing pruritic dermatitis in several mammalian species. This is the first report of Pelodera infection in the brown bear. Although capable of causing primary dermatitis, the finding of Pelodera is not sufficient to conclude that it is the cause of the lesions observed in bears. Nevertheless, the high prevalence of the infection is indicative of a diffuse phenomenon that requires further specific investigations given the interest and conservational relevance of this relict bear population.


Assuntos
Infecções por Nematoides , Doenças Parasitárias em Animais , Dermatopatias Parasitárias , Ursidae , Animais , Biópsia/veterinária , Dermatite/parasitologia , Dermatite/patologia , Dermatite/veterinária , Nematoides/isolamento & purificação , Infecções por Nematoides/parasitologia , Infecções por Nematoides/patologia , Infecções por Nematoides/veterinária , Doenças Parasitárias em Animais/parasitologia , Doenças Parasitárias em Animais/patologia , Pele/parasitologia , Pele/patologia , Dermatopatias Parasitárias/parasitologia , Dermatopatias Parasitárias/patologia , Dermatopatias Parasitárias/veterinária , Strongyloides/isolamento & purificação , Ursidae/parasitologia
9.
Biomolecules ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291746

RESUMO

Gerstmann-Sträussler-Scheinker disease (GSS) is a rare genetic prion disease. A large GSS kindred linked to the serine-for-phenylalanine substitution at codon 198 of the prion protein gene (GSS-F198S) is characterized by conspicuous accumulation of prion protein (PrP)-amyloid deposits and neurofibrillary tangles. Recently, we demonstrated the transmissibility of GSS-F198S prions to bank vole carrying isoleucine at 109 PrP codon (BvI). Here we investigated: (i) the transmissibility of GSS-F198S prions to voles carrying methionine at codon 109 (BvM); (ii) the induction of hyperphosphorylated Tau (pTau) in two vole lines, and (iii) compared the phenotype of GSS-F198S-induced pTau with pTau induced in BvM following intracerebral inoculation of a familial Alzheimer's disease case carrying Presenilin 1 mutation (fAD-PS1). We did not detect prion transmission to BvM, despite the high susceptibility of BvI previously observed. Immunohistochemistry established the presence of induced pTau depositions in vole brains that were not affected by prions. Furthermore, the phenotype of pTau deposits in vole brains was similar in GSS-F198S and fAD-PS1. Overall, results suggest that, regardless of the cause of pTau deposition and its relationship with PrPSc in GSS-F198S human-affected brains, the two components possess their own seeding properties, and that pTau deposition is similarly induced by GSS-F198S and fAD-PS1.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Príons , Animais , Humanos , Arvicolinae/genética , Códon , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Isoleucina/genética , Metionina/genética , Mutação , Fenilalanina , Presenilina-1/genética , Proteínas Priônicas/genética , Príons/genética , Serina
10.
Sci Rep ; 6: 23180, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976106

RESUMO

Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrP(Sc) is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrP(C) may provide an opportunity to overcome these problems. PrP(C) ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrP(C), and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrP(C)-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrP(C)-dependent synaptotoxicity of amyloid-ß (Aß) oligomers, which are associated with Alzheimer's Disease. These results demonstrate that molecules binding to PrP(C) may produce a dual effect of blocking prion replication and inhibiting PrP(C)-mediated toxicity.


Assuntos
Metaloporfirinas/química , Proteínas PrPC/metabolismo , Proteínas Priônicas/antagonistas & inibidores , Tetrapirróis/química , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Células HEK293 , Humanos , Metaloporfirinas/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Porfirinas , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas Priônicas/química , Ligação Proteica , Proteínas Recombinantes/metabolismo , Tetrapirróis/farmacologia
11.
Sci Rep ; 6: 20443, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26841849

RESUMO

Gerstmann-Sträussler-Scheinker disease (GSS) is an inherited neurodegenerative disorder associated with mutations in the prion protein gene and accumulation of misfolded PrP with protease-resistant fragments (PrP(res)) of 6-8 kDa. With the exception of a few GSS cases characterized by co-accumulation of PrP(res) of 21 kDa, efforts to transmit GSS to rodents have been unsuccessful. As a result, GSS subtypes exclusively associated with 6-8 kDa PrP(res) have often been considered as non-transmissible proteinopathies rather than true prion diseases. We show that GSS with P102L, A117V and F198S mutations transmit efficiently and produce distinct pathological phenotypes in bank voles (M. glareolus), irrespective of the presence of 21 kDa PrP(res) in the inoculum, demonstrating that GSS is a genuine prion disease characterized by both transmissibility and strain variation.


Assuntos
Doença de Gerstmann-Straussler-Scheinker/patologia , Mutação , Proteínas Priônicas/genética , Animais , Arvicolinae , Modelos Animais de Doenças , Doença de Gerstmann-Straussler-Scheinker/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA