Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Ecotoxicol Environ Saf ; 157: 143-149, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29621705

RESUMO

Flutolanil and pentachloronitrobenzene (PCNB) are fungicides used to control or suppress foliar and soil borne diseases in turf and ornamental crops. On golf courses, sports fields, sod farms and commercial lawns these fungicides are used as preventive treatments to combat snow mold, brown patch and fairy ring. Depending on the aquatic organism, flultolanil and PCNB are considered to be moderately to highly toxic. Therefore runoff or drift from treated areas may be hazardous to organisms in adjacent aquatic sites. This research compared the transport of flutolanil and PCNB with runoff from turfgrass managed as a golf course fairway. The quantity of fungicide transported with runoff and observations reported with the chemographs followed trends in agreement with the chemical properties of the compounds. Overall, we observed the rate of transport for flutolanil was greater than PCNB, which contributed to the more than 12 times larger load (µg/m2) of flutolanil transported off-site at the conclusion of the simulated storm runoff. A better understanding of the off-site transport of pesticides with runoff is needed to make informed decisions on management practices to reduce potential adverse effects on non-target organisms, as well as maintain control of targeted pests in the area of application. In addition, data obtained with this research can be used in model simulations to predict nonpoint source pollution potentials beyond experimental conditions.


Assuntos
Agrostis , Anilidas/análise , Fungicidas Industriais/análise , Golfe , Nitrobenzenos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Ecotoxicol Environ Saf ; 156: 420-427, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29597059

RESUMO

Management of turfgrass on golf courses and athletic fields often involves application of plant protection products to maintain or enhance turfgrass health and performance. However, the transport of fertilizer and pesticides with runoff to adjacent surface waters can enhance algal blooms, promote eutrophication and may have negative impacts on sensitive aquatic organisms and ecosystems. Thus, we evaluated the effectiveness of chemical application setbacks to reduce the off-site transport of chemicals with storm runoff. Experiments with water soluble tracer compounds confirmed an increase in application setback distance resulted in a significant increase in the volume of runoff measured before first off-site chemical detection, as well as a significant reduction in the total percentage of applied chemical transported with the storm runoff. For example, implementation of a 6.1 m application setback reduced the total percentage of an applied water soluble tracer by 43%, from 18.5% of applied to 10.5% of applied. Evaluation of chemographs revealed the efficacy of application setbacks could be observed with storms resulting in lesser (e.g. 100 L) and greater (e.g. > 300 L) quantities of runoff. Application setbacks offer turfgrass managers a mitigation approach that requires no additional resources or time inputs and may serve as an alternative practice when buffers are less appropriate for land management objectives or site conditions. Characterizing potential contamination of surface waters and developing strategies to safeguard water quality will help protect the environment and improve water resource security. This information is useful to grounds superintendents for designing chemical application strategies to maximize environmental stewardship. The data will also be useful to scientists and regulators working with chemical transport and risk models.


Assuntos
Poaceae/crescimento & desenvolvimento , Poluição da Água/prevenção & controle , Qualidade da Água , Benzoatos/análise , Brometos/análise , Monitoramento Ambiental , Eutrofização , Fertilizantes/análise , Praguicidas/análise , Compostos de Potássio/análise , Solo/química , Tolueno/análogos & derivados , Tolueno/análise , Movimentos da Água , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 50(1): 36-45, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26605430

RESUMO

Understanding the sources, transport, and spatiotemporal variability of contaminants of emerging concern (CECs) is important for understanding risks and developing monitoring and mitigation strategies. This study used mass balances to compare wastewater treatment plant (WWTP) and upstream sources of 16 CECs to a mixed-use watershed in Minnesota, under different seasonal and hydrological conditions. Three distinct CEC groups emerged with respect to their source proportionality and instream behavior. Agricultural herbicides and daidzein inputs were primarily via upstream routes with the greatest loadings and concentrations during high flows. Trimethoprim, mecoprop, nonprescription pharmaceuticals, and personal care products entered the system via balanced/mixed pathways with peak loadings and concentrations in high flows. Carbaryl, 4-nonylphenol, and the remaining prescription pharmaceuticals entered the system via WWTP effluent with relatively stable loadings across sampling events. Mass balance analysis based on multiple sampling events and sites facilitated CEC source comparisons and may therefore prove to be a powerful tool for apportioning sources and exploring mitigation strategies.


Assuntos
Monitoramento Ambiental/métodos , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Geografia , Minnesota , Purificação da Água
4.
Sci Total Environ ; 818: 151745, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34801497

RESUMO

Insecticides are widely used in the Midwestern USA to combat soybean aphids (Aphis glycines), a globally important crop pest. Broad-spectrum foliar insecticides such as chlorpyrifos, lambda-cyhalothrin, and bifenthrin (hereafter, "target insecticides") are toxic to wildlife in laboratory settings; however, little information exists regarding drift and deposition of these insecticides in fragmented tallgrass prairie grasslands such as those in Minnesota, USA. To address this information gap, target insecticide spray drift and deposition were measured on passive samplers and arthropods in grasslands adjacent to crop fields in Minnesota. Samples were collected at focal soybean field sites immediately following target insecticide application and at reference corn field sites without target insecticide application. Target insecticides were detected 400 m into grasslands at both focal and reference sites. Residues of chlorpyrifos, an insecticide especially toxic to pollinators and birds, were measured above the contact lethal dose (LD50) for honey bees (Apis mellifera) up to 25 m from field edges in adjacent grasslands. Chlorpyrifos residues on arthropods were below the acute oral LD50 for several common farmland bird species but were above the level shown to impair migratory orientation in white-crowed sparrows (Zonotrichia leucophrys). Deposition of target insecticides on passive samplers was inversely associated with distance from field edge and percent canopy cover of grassland vegetation, and positively associated with samplers placed at mid-canopy compared to ground level. Target insecticide deposition on arthropods had an inverse relationship with vertical vegetation density and was positively associated with maximum height of vegetation. Tallgrass prairie with cover ≥25 m from row crop edges may provide wildlife habitat with lower exposure to foliar application insecticides. Prairie management regimes that increase percent canopy cover and density of vegetation may also reduce exposure of wildlife to these insecticides.


Assuntos
Clorpirifos , Inseticidas , Animais , Animais Selvagens , Abelhas , Clorpirifos/toxicidade , Pradaria , Inseticidas/análise , Glycine max
5.
J Environ Qual ; 38(6): 2402-11, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19875796

RESUMO

Pesticides applied to turf grass have been detected in surface waters raising concerns of their effect on water quality and interest in their source, hydrological transport and use of models to predict transport. TurfPQ, a pesticide runoff model for turf grass, predicts pesticide transport but has not been rigorously validated for larger storms. The objective of this study was to determine TurfPQ's ability to accurately predict the transport of pesticides with runoff following more intense precipitation. The study was conducted with creeping bentgrass [Agrostis palustris Huds.] turf managed as a golf course fairway. A pesticide mixture containing dicamba, 2,4-D, MCPP, flutolanil, and chlorpyrifos was applied to six adjacent 24.4 by 6.1 m plots. Controlled rainfall simulations were conducted using a rainfall simulator designed to deliver water droplets similar to natural rain. Runoff flow rates and volume were measured and water samples were collected for analysis of pesticide concentrations. Six simulations yielded 13 events with which to test TurfPQ. Measured mean percentage of applied pesticide recovered in the runoff for dicamba, 2,4-D, MCPP, flutolanil, and chlorpyrifos was 24.6, 20.7, 14.9, 5.9, and 0.8%, respectively. The predicted mean values produced by TurfPQ were 13.7, 15.6, 15.5, 2.5, and 0.2%, respectively. The model produced correlations of r=0.56 and 0.64 for curve number hydrology and measured hydrology, respectively. Comparisons of the model estimates with our field observations indicate that TurfPQ under predicted pesticide runoff during 69.5+/-11.4 mm, 1.9+/-0.2 h, simulated storms.


Assuntos
Modelos Químicos , Praguicidas/análise , Poluição Química da Água/análise , Carbono/análise , Simulação por Computador , Meia-Vida , Compostos Orgânicos/análise , Poaceae , Chuva
6.
Environ Toxicol Chem ; 38(8): 1606-1624, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31361364

RESUMO

Anticipating, identifying, and prioritizing strategic needs represent essential activities by research organizations. Decided benefits emerge when these pursuits engage globally important environment and health goals, including the United Nations Sustainable Development Goals. To this end, horizon scanning efforts can facilitate identification of specific research needs to address grand challenges. We report and discuss 40 priority research questions following engagement of scientists and engineers in North America. These timely questions identify the importance of stimulating innovation and developing new methods, tools, and concepts in environmental chemistry and toxicology to improve assessment and management of chemical contaminants and other diverse environmental stressors. Grand challenges to achieving sustainable management of the environment are becoming increasingly complex and structured by global megatrends, which collectively challenge existing sustainable environmental quality efforts. Transdisciplinary, systems-based approaches will be required to define and avoid adverse biological effects across temporal and spatial gradients. Similarly, coordinated research activities among organizations within and among countries are necessary to address the priority research needs reported here. Acquiring answers to these 40 research questions will not be trivial, but doing so promises to advance sustainable environmental quality in the 21st century. Environ Toxicol Chem 2019;38:1606-1624. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Conservação dos Recursos Naturais , Ecotoxicologia , Pesquisa , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Humanos , América do Norte , Desenvolvimento Sustentável
7.
J Agric Food Chem ; 55(14): 5367-76, 2007 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-17552539

RESUMO

Globalization of markets and the growing world population increase threats of invasive and exotic species and place greater demands on food and fiber production. Pest management in both agricultural and nonagricultural settings employs established practices and new biological, chemical, and management technologies. Pesticides are an essential tool in integrated pest management. Without pesticides a significant percentage of food and fiber crops would be lost, infectious diseases would increase, and valuable native habitats would be devastated. Therefore, it is important to understand the environmental fate of pesticides and assess their potential exposure and associated risks to human health and the environment. This paper summarizes the Advances in Pesticide Environmental Fate and Exposure Assessment symposium held at the 231st National Meeting of the American Chemical Society (Atlanta, GA, 2006). The focus of the symposium was to provide current information on advances in pesticide environmental fate and exposure assessments. Thirty papers were presented on advances ranging from subcellular processes to watershed-scale studies on topics including chemical degradation, sorption, and transport; improved methodologies; use of modeling and predictive tools; exposure assessment; and treatment and remediation. This information is necessary to develop more effective pesticide use and management practices, to better understand pesticide fate and associated exposures and risks, to develop mitigation and remediation strategies, and to establish sound science-based regulations.


Assuntos
Meio Ambiente , Exposição Ambiental , Praguicidas , Adsorção , Agricultura , Bactérias/metabolismo , Poluição Ambiental/prevenção & controle , Humanos , Praguicidas/química , Praguicidas/metabolismo , Água/química , Poluentes da Água/química
8.
J Agric Food Chem ; 55(4): 1377-84, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17243696

RESUMO

A common management practice for the production of fresh-market vegetables utilizes polyethylene (plastic) mulch because it increases soil temperature, decreases weed pressure, maintains soil moisture, and minimizes soil contact with the product. However, rain events afford much more erosion and runoff because 50-75% of the field is covered with an impervious surface. A plot study was conducted to compare and to quantify the off-site movement of soil, insecticides, and fungicides associated with runoff from plots planted with Sunbeam tomatoes (Lycopersicon esculentum Mill) using the conventional polyethylene mulch management practice vs an alternative management practice-polyethylene mulch-covered beds with cereal rye (Secale cereale) planted in the furrows between the beds. The use of cereal rye-covered furrows with the conventional polyethylene system decreased runoff volume by more than 40%, soil erosion by more than 80%, and pesticide loads by 48-74%. Results indicate that vegetative furrows are critical to minimizing the negative aspects of this management practice.


Assuntos
Agricultura/métodos , Fungicidas Industriais/análise , Inseticidas/análise , Plásticos , Chuva , Solanum lycopersicum/crescimento & desenvolvimento , Polietileno , Secale/crescimento & desenvolvimento , Solo , Água/química
9.
Environ Toxicol Chem ; 26(11): 2455-64, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17941735

RESUMO

The ability of agricultural management practices to reduce the ecological risks of pesticides was evaluated. Risk quotients, a mathematical description of the relationship between exposure and toxicity, and hazard ratings, a rank of the potential risk of pesticides to aquatic environments, were calculated for conventional and alternative cultivation practices for tomatoes: Poly-Bare, raised beds covered with polyethylene mulch with bare-soil furrows; Poly-Rye, raised beds covered with polyethylene mulch with cereal rye (Secale cereale) grown in the furrows; and Vetch, raised beds and furrows planted with hairy vetch seed (Vicia villosa). Evaluations were conducted using measured pesticide concentrations in runoff at the edge-of-field and estimated environmental concentrations in an adjacent creek and a theoretical pond receiving the runoff. Runoff from Poly-Bare presented the greatest risk to ecosystem health and to sensitive organisms, whereas the use of Vetch minimized these risks. Previous studies have shown that harvest yields were maintained and that runoff volume, soil loss, and off-site transport of pesticides measured in runoff were reduced using the alternative management practices (Poly-Rye and Vetch). Together, these results indicate that the alternative management practices (Poly-Rye and Vetch) have a less adverse impact on the environment than the conventional management practice (Poly-Bare) while providing growers with an acceptable economic return. In addition, the present study demonstrates the need to consider the management practice when assessing the potential risks and hazards for certain pesticides.


Assuntos
Conservação dos Recursos Naturais/métodos , Saúde Ambiental , Praguicidas/toxicidade , Verduras/efeitos dos fármacos , Gerenciamento de Resíduos/métodos , Poluentes Químicos da Água/toxicidade , Abastecimento de Água/normas , Agricultura , Ecologia , Modelos Biológicos , Praguicidas/análise , Medição de Risco , Verduras/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Abastecimento de Água/análise
10.
Sci Total Environ ; 580: 533-539, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28012661

RESUMO

Maintaining quality golf course turf often requires irrigation and application of fertilizer. The transport of excess nutrients with runoff water from highly managed and fertilized biological systems to surrounding surface waters has been shown to result in enhanced algal blooms and promotion of eutrophication. Environmental stewardship includes looking for new approaches to reduce adverse environmental impacts of current practices. One strategy is to replace traditional turfgrass with low-maintenance turfgrass species. Fescue grasses have been shown to provide characteristics desirable for golf course fairways. Thus side-by-side studies comparing runoff from plots planted in creeping bentgrass (CGB) or fine fescue mixture (FFM), similarly managed as a golf course fairway, were conducted to measure runoff volumes and the amount of ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N) transported off-site with runoff. Greater runoff volumes and mass of applied nutrients were measured in the runoff from the FFM, representing a 38% and 56% median increase in the off-site mass transport of NH4-N and NO3-N with surface flow. Shoot density, thatch depth and soil moisture were the most important factors related to runoff volume. Results of this research will be useful to grounds superintendents and researchers for selecting and developing management strategies to improve environmental stewardship of managed turf while providing desired turf quality.


Assuntos
Agrostis , Fertilizantes , Festuca , Nitrogênio/análise , Movimentos da Água , Golfe
11.
Sci Total Environ ; 583: 72-80, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28104330

RESUMO

The detection of pesticides, associated with turfgrass management, in storm runoff and surface waters of urban watersheds has raised concerns regarding their source, potential environmental effects and a need for strategies to reduce their inputs. In previous research we discovered that hollow tine core cultivation (HTCC) was more effective than other management practices for reducing the off-site transport of pesticides with runoff from creeping bentgrass turf managed as a golf course fairway. This was primarily the result of enhanced infiltration and reduced runoff volumes associated with turf managed with hollow tines. In this study we evaluated the addition of verticutting (VC) to HTCC (HTCC+VC) in an attempt to further enhance infiltration and mitigate the off-site transport of pesticides with runoff from managed turf. Overall, greater or equal quantities of pesticides were transported with runoff from plots managed with HTCC+VC compared to HTCC or VC alone. For the pesticides evaluated HTCC

12.
J Agric Food Chem ; 54(21): 8163-70, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17032024

RESUMO

Sorption-desorption is one of the most important processes affecting the leaching of pesticides through soil because it controls the amount of pesticide available for transport. Subsurface soil properties can significantly affect pesticide transport and the potential for groundwater contamination. This research characterized the sorption-desorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) and three of its metabolites, 1-[(6-chloro-3-pyridinyl)methyl]-2-imidazolidinone (imidacloprid-urea), 1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-1H-imidazol-2-amine (imidacloprid-guanidine), and 1-[(6-chloro-3-pyridinyl)methyl]-1H-imidazol-2-amine (imidacloprid-guanidine-olefin), as a function of changing soil properties with depth in two profiles extending from the surface to a depth of 1.8 or 8 m. Sorption of each compound was highly variable and hysteretic in all cases. Normalizing the sorption coefficients (K(f)) to the organic carbon or the clay content of the soil did not reduce the variability in sorption coefficients for any compound. These results illustrate the importance of evaluation of the sorption data used to predict potential mobility. Understanding the variability of soil properties and processes as a function of depth is necessary for accurate prediction of pesticide dissipation.


Assuntos
Imidazóis/química , Imidazóis/metabolismo , Inseticidas/química , Inseticidas/metabolismo , Solo/análise , Adsorção , Neonicotinoides , Nitrocompostos , Poluição da Água
13.
Pest Manag Sci ; 62(7): 598-602, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16691543

RESUMO

Sorption-desorption interactions of pesticides with soil determine the availability of pesticides in soil for transport, plant uptake and microbial degradation. These interactions are affected by the physical and chemical properties of the pesticide and soil and, for some pesticides, their residence time in the soil. While sorption-desorption of many herbicides has been characterised, very little work in this area has been done on herbicide metabolites. The objective of this study was to characterise sorption-desorption of two sulfonylaminocarbonyltriazolinone herbicides, flucarbazone and propoxycarbazone, and their benzenesulfonamide and triazolinone metabolites in two soils with different physical and chemical properties. K(f) values for all four chemicals were greater in clay loam soil, which had higher organic carbon and clay contents than loamy sand. K(f-oc) ranged from 29 to 119 for the herbicides and from 42 to 84 for the metabolites. Desorption was hysteretic in every case. Lower desorption in the more sorptive system might indicate that hysteresis can be attributed to irreversible binding of the molecules to soil surfaces. These data show the importance of characterisation of both sorption and desorption of herbicide residues in soil, particularly in the case of prediction of herbicide residue transport. In this case, potential transport of sulfonylaminocarbonyltriazolinone herbicide metabolites would be overpredicted if parent chemical soil sorption values were used to predict transport.


Assuntos
Benzoatos/química , Praguicidas/química , Solo/análise , Sulfonamidas/química , Triazóis/química , Fatores de Tempo , Benzenossulfonamidas
14.
Sci Total Environ ; 551-552: 605-13, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26897403

RESUMO

The occurrence and spatiotemporal variation of 26 contaminants of emerging concern (CECs) were evaluated in 68 water samples in 2011-2012 in the Zumbro River watershed, Minnesota, U.S.A. Samples were collected across a range of seasonal/hydrological conditions from four stream sites that varied in associated land use and presence of an upstream wastewater treatment plant (WWTP). Selected CECs included human/veterinary pharmaceuticals, personal care products, pesticides, phytoestrogens, and commercial/industrial compounds. Detection frequencies and concentrations varied, with atrazine, metolachlor, acetaminophen, caffeine, DEET, and trimethoprim detected in more than 70% of samples, acetochlor, mecoprop, carbamazepine, and daidzein detected in 30%-50% of samples, and 4-nonylphenol, cotinine, sulfamethoxazole, erythromycin, tylosin, and carbaryl detected in 10%-30% of samples. The remaining target CECs were not detected in water samples. Three land use-associated trends were observed for the detected CECs. Carbamazepine, 4-nonylphenol, erythromycin, sulfamethoxazole, tylosin, and carbaryl profiles were WWTP-dominated, as demonstrated by more consistent loading and significantly greater concentrations downstream of the WWTP and during low-flow seasons. In contrast, acetaminophen, trimethoprim, DEET, caffeine, cotinine, and mecoprop patterns demonstrated both seasonally-variable non-WWTP-associated and continual WWTP-associated influences. Surface water studies of CECs often target areas near WWTPs. This study suggests that several CECs often characterized as effluent-associated have additional important sources such as septic systems or land-applied biosolids. Finally, agricultural herbicide (atrazine, acetochlor, and metolachlor) profiles were strongly influenced by agricultural land use and seasonal application-runoff, evident by significantly greater concentrations and loadings at upstream sites and in early summer when application and precipitation rates are greatest. Our results indicate that CEC monitoring studies should consider a range of land uses, seasonality, and transport pathways in relation to concentrations and loadings. This knowledge can augment CEC monitoring programs to result in more accurate source, occurrence, and ecological risk characterizations, more precisely targeted mitigation initiatives, and ultimately, enhanced environmental decision-making.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Agricultura , Minnesota , Praguicidas/análise , Fenóis , Eliminação de Resíduos Líquidos , Águas Residuárias
15.
Sci Total Environ ; 505: 896-904, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25461092

RESUMO

This study evaluated the occurrence and distribution of 15 contaminants of emerging concern (CECs) in stream water and sediments in the Zumbro River watershed in Minnesota and compared these with sub-watershed land uses. Sixty pairs of sediment and water samples were collected across all seasons from four stream sites for over two years and analyzed for selected personal care products, pesticides, human and veterinary medications, and phytoestrogens. Spatial and temporal analyses indicate that pharmaceuticals and personal care products (urban/residential CECs) are significantly elevated in water and/or sediment at sites with greater population density (>100 people/km(2)) and percentage of developed land use (>8% of subwatershed area) than those with less population density and land area under development. Significant spatial variations of agricultural pesticides in water and sediment were detectable, even though all sites had a high percentage of agricultural land use. Seasonality in CEC concentration was observed in water but not in sediment, although sediment concentrations of three CECs did vary between years. Average measured non-equilibrium distribution coefficients exceeded equilibrium hydrophobic partitioning-based predictions for 5 of the 7 detected CECs by at least an order of magnitude. Agreement of measured and predicted distribution coefficients improved with increasing hydrophobicity and in-stream persistence. The more polar and degradable CECs showed greater variability in measured distributions across different sampling events. Our results confirm that CECs are present in urban and agricultural stream sediments, including those CECs that would typically be thought of as non-sorptive based on their log Kow values. These results and the observed patterns of sediment and water distributions augment existing information to improve prediction of CEC fate and transport, leading to more accurate assessments of exposure and risk to surface water ecosystems.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Agricultura , Ecossistema , Sedimentos Geológicos/química , Minnesota , Praguicidas/análise , Rios/química
16.
J Agric Food Chem ; 52(25): 7621-7, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15675813

RESUMO

The transformation of isoxaflutole (ISOX) to its herbicidally active diketonitrile degradate (DKN) was significantly enhanced in the presence of soil and occurred more rapidly in systems containing soil with a greater soil pH. Sorption-desorption of ISOX and DKN in five soils collected within a field revealed both ISOX and DKN were more readily sorbed to soils with greater organic matter, clay content, and lower soil pH. Sorption of ISOX residues occurred within 2 h, and extracts contained similar concentrations of ISOX and DKN at 24 h, suggesting the 24-h sorption coefficients for ISOX-treated systems were actually for mixed ISOX residues. Freundlich sorption coefficients were 3 and 4 times greater for ISOX than for DKN. On the basis of the Freundlich organic carbon sorption constants, ISOX and DKN can be categorized in the very high and high mobility classes, suggesting their potential to leach in the soils needs to be evaluated.


Assuntos
Herbicidas/química , Isoxazóis/química , Nitrilas/química , Solo/análise , Sulfonas/química , Adsorção , Concentração de Íons de Hidrogênio , Hidrólise
17.
J Agric Food Chem ; 51(12): 3604-8, 2003 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-12769532

RESUMO

Aging (herbicide-soil contact time) has been shown to significantly affect the sorption-desorption characteristics of many herbicides, which in turn can affect the availability of the herbicide for transport, plant uptake, and microbial degradation. In contrast, very little work in this area has been done on herbicide metabolites in soil. The objective of this study was to characterize the sorption-desorption of sulfonylaminocarbonyltriazolinone herbicide metabolites incubated in soils at different soil moisture potentials. A benzenesulfonamide metabolite and a triazolinone metabolite from sulfonylaminocarbonyltriazolinone herbicides were incubated in clay loam and loamy sand soils for up to 12 weeks at -33 kPa and at water contents equivalent to 50 and 75% of that at -33 kPa. Chemicals were extracted sequentially with 0.01 N CaCl(2) and aqueous acetonitrile (solution and sorbed phase concentrations, respectively), and apparent sorption coefficients (K(d,app)) were calculated. Sufficient metabolite remained during the incubation (>55% of applied) to allow determination of the coefficients. The initial aging period (2 weeks after application) significantly increased sorption as indicated by increased K(d,app) values for the chemical remaining, after which they remained relatively constant. After 12 weeks of incubation at -33 kPa, K(d,app) values for benzenesulfonamide and triazolinone increased by a factor of 3.5 in the clay loam soil and by a factor of 5.9 in the loamy sand as compared to freshly treated soils. There was no effect of moisture potential on aged apparent K(d,app) values. These data show the importance of characterization of sorption-desorption in aged herbicide residues, including metabolites, in soil, particularly in the case of prediction of herbicide residue transport in soil. In this case, potential transport of sulfonylaminocarbonyltriazolinone herbicide metabolites would be overpredicted if freshly treated soil K(d) values were used to predict transport.


Assuntos
Herbicidas/química , Solo/análise , Triazóis/química , Adsorção , Cloreto de Cálcio/química , Cinética , Poluentes do Solo/análise , Fatores de Tempo
18.
J Agric Food Chem ; 50(19): 5368-72, 2002 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12207476

RESUMO

Sorption-desorption interactions of pesticides with soil determine the availability of pesticides in soil for transport, plant uptake, and microbial degradation. These interactions are affected by the physical and chemical properties of the pesticide and soil, and for some pesticides, their residence time in the soil. The objective of this study was to characterize sorption-desorption of two sulfonylaminocarbonyltriazolinone herbicides incubated in soils at different soil moisture potentials. The chemicals were incubated in clay loam and loamy sand soils for up to 12 wks at -33 kPa and at water contents equivalent to 50 and 75% of that at -33 kPa. Chemicals were extracted sequentially with 0.01 N CaCl(2) and aqueous acetonitrile, and sorption coefficients were calculated. Sufficient sulfonylaminocarbonyltriazolinone herbicides remained (>40% of that applied) during incubation to allow calculation of sorption coefficients. Aging significantly increased sorption as indicated by increased sorption coefficients. For instance, for sulfonylaminocarbonyltriazolinone remaining after a 12-wk incubation at -33 kPa, K(d) increased by a factor of 4.5 in the clay loam soils and by 6.6 in the loamy sand as compared to freshly treated soils. There was no effect of moisture potential on sorption K(d) values. These data show the importance of characterization of sorption-desorption in aged herbicide residues in soil, particularly in the case of prediction of herbicide transport in soil. In this case, potential transport of sulfonylaminocarbonyltriazolinone herbicides would be over-predicted if freshly treated soil K(d) values were used to predict transport.


Assuntos
Herbicidas/química , Solo/análise , Acetonitrilas , Adsorção , Cloreto de Cálcio , Fatores de Tempo , Triazóis/química , Triazóis/isolamento & purificação
19.
Environ Toxicol Chem ; 23(5): 1145-55, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15180365

RESUMO

In aquatic environments, pesticides can partition between the dissolved phase and particulate phase depending on the type of suspended sediment present and the physical and chemical properties of the pesticides and water. Particulate matter and sediment can alter the bioavailability of contaminants to organisms and therefore influence their toxicity and availability for microbial degradation. Experiments were conducted to determine the degradation of atrazine (6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2.4-diamine) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(methooxyprop-2-yl)acetamide) in surface water, and to evaluate the contribution of sediment to their dissipation. Sediment significantly reduced concentrations of atrazine and metolachlor in the surface water as a result of greater degradation, evident by increased quantities of degradates in the surface water, and the partitioning of the herbicide or herbicide degradates in the sediment. First-order 50% dissipation time (DT50) values for atrazine and metolachlor were 42 and 8 d in the surface water-sediment incubation systems, which were almost four times less than the DT50s calculated for the sediment-free systems. The results of this research illustrate the importance of sediment in the fate of pesticides in surface water. Greater comprehension of the role of sediment to sequester or influence degradation of agrichemicals in aquatic systems will provide a better understanding of the bioavailability and potential toxicity of these contaminants to aquatic organisms.


Assuntos
Acetamidas/metabolismo , Atrazina/metabolismo , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Água/química , Acetamidas/análise , Atrazina/análise , Biodegradação Ambiental , Disponibilidade Biológica , Herbicidas/análise , Biologia Marinha , Praguicidas/análise , Testes de Toxicidade , Movimentos da Água
20.
Environ Toxicol Chem ; 21(12): 2640-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12463559

RESUMO

The present study evaluated the influence of soil depth, soil moisture, and concentration on the persistence and degradation of metolachlor in soil. Greater percentages of metolachlor persisted in subsurface soils than in surface soil regardless of the soil moisture or initial herbicide concentration. Larger quantities of bound residues and extractable degradation products were found in the surface soils as a result of the increased soil sorption and biodegradation of metolachlor associated with the surface soil, which had more organic matter. Saturated soil favored the dissipation of metolachlor and the formation of soil-bound residues. Significantly greater quantities of a dechlorinated metabolite were measured in the saturated surface soil compared to the unsaturated soil. Mineralization of metolachlor to CO2 and volatilization of metolachlor or metolachlor degradates was minimal in surface and subsurface soils at both soil moistures and herbicide concentrations. Increased metolachlor concentrations did not inhibit microbial activity; however, the greater rate of application did result in the reduced percentage of applied [14C]metolachlor that was bound to surface or subsurface soil. A significant reduction in the quantity of extractable metolachlor degradates and unextractable soil-bound residues in sterile soil revealed the significance of biodegradation to the dissipation of metolachlor in soil.


Assuntos
Acetamidas/metabolismo , Herbicidas/metabolismo , Poluentes do Solo/metabolismo , Acetamidas/análise , Adsorção , Biodegradação Ambiental , Dióxido de Carbono/química , Herbicidas/análise , Microbiologia do Solo , Poluentes do Solo/análise , Volatilização , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA