Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(12): e1006741, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29216315

RESUMO

A hallmark property of the neurotropic alpha-herpesvirinae is the dissemination of infection to sensory and autonomic ganglia of the peripheral nervous system following an initial exposure at mucosal surfaces. The peripheral ganglia serve as the latent virus reservoir and the source of recurrent infections such as cold sores (herpes simplex virus type I) and shingles (varicella zoster virus). However, the means by which these viruses routinely invade the nervous system is not fully understood. We report that an internal virion component, the pUL37 tegument protein, has a surface region that is an essential neuroinvasion effector. Mutation of this region rendered herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) incapable of spreading by retrograde axonal transport to peripheral ganglia both in culture and animals. By monitoring the axonal transport of individual viral particles by time-lapse fluorescence microscopy, the mutant viruses were determined to lack the characteristic sustained intracellular capsid motion along microtubules that normally traffics capsids to the neural soma. Consistent with the axonal transport deficit, the mutant viruses did not reach sites of latency in peripheral ganglia, and were avirulent. Despite this, viral propagation in peripheral tissues and in cultured epithelial cell lines remained robust. Selective elimination of retrograde delivery to the nervous system has long been sought after as a means to develop vaccines against these ubiquitous, and sometimes devastating viruses. In support of this potential, we find that HSV-1 and PRV mutated in the effector region of pUL37 evoked effective vaccination against subsequent nervous system challenges and encephalitic disease. These findings demonstrate that retrograde axonal transport of the herpesviruses occurs by a virus-directed mechanism that operates by coordinating opposing microtubule motors to favor sustained retrograde delivery of the virus to the peripheral ganglia. The ability to selectively eliminate the retrograde axonal transport mechanism from these viruses will be useful in trans-synaptic mapping studies of the mammalian nervous system, and affords a new vaccination paradigm for human and veterinary neurotropic herpesviruses.


Assuntos
Transporte Axonal/fisiologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/patogenicidade , Proteínas Estruturais Virais/fisiologia , Sequência de Aminoácidos , Animais , Transporte Axonal/genética , Axônios/virologia , Gânglios/virologia , Genes Virais , Herpesvirus Humano 1/genética , Herpesvirus Suídeo 1/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Modelos Moleculares , Mutação , Neurônios/virologia , Ratos , Ratos Long-Evans , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Vacinas Virais/genética , Virulência/genética , Virulência/fisiologia , Liberação de Vírus/genética , Liberação de Vírus/fisiologia
2.
Proc Natl Acad Sci U S A ; 112(41): 12818-23, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26407585

RESUMO

Neuroinvasive herpesviruses display a remarkable propensity to enter the nervous system of healthy individuals in the absence of obvious trauma at the site of inoculation. We document a repurposing of cellular ubiquitin during infection to switch the virus between two invasive states. The states act sequentially to defeat consecutive host barriers of the peripheral nervous system and together promote the potent neuroinvasive phenotype. The first state directs virus access to nerve endings in peripheral tissue, whereas the second delivers virus particles within nerve fibers to the neural ganglia. Mutant viruses locked in either state remain competent to overcome the corresponding barrier but fail to invade the nervous system. The herpesvirus "ubiquitin switch" may explain the unusual ability of these viruses to routinely enter the nervous system and, as a consequence, their prevalence in human and veterinary hosts.


Assuntos
Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidade , Neurônios/metabolismo , Neurônios/virologia , Ubiquitinação , Animais , Chlorocebus aethiops , Herpes Simples/genética , Herpesvirus Humano 1/genética , Humanos , Neurônios/patologia , Células Vero
3.
BMC Biotechnol ; 16(1): 64, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27580861

RESUMO

BACKGROUND: Infectious clones are fundamental tools for the study of many viruses, allowing for efficient mutagenesis and reproducible production of genetically-defined strains. For the large dsDNA genomes of the herpesviridae, bacterial artificial chromosomes have become the cloning vector of choice due to their capacity to house full-length herpesvirus genomes as single contiguous inserts. Furthermore, while maintained as plasmids in Escherichia coli, the clones can be mutated using robust prokaryotic recombination systems. An important consideration in the design of these clones is the means by which the vector backbone is removed from the virus genome upon delivery into mammalian cells. A common approach to vector excision is to encode loxP sites flanking the vector sequences and rely on Cre recombinase expression from a transformed cell line. Here we examine the efficiency of vector removal using this method, and describe a "self-excising" infectious clone of HSV-1 strain F that offers enhancements in virus production and utility. RESULTS: Insertion of a fluorescent protein expression cassette into the vector backbone of the HSV-1 strain F clone, pYEbac102, demonstrated that 2 serial passages on cells expressing Cre recombinase was required to achieve > 95 % vector removal from the virus population, with 3 serial passages resulting in undetectable vector retention. This requirement was eliminated by replacing the reporter coding sequence with the CREin gene, which consists of a Cre coding sequence disrupted by a synthetic intron. This self-excising variant of the infectious clone produced virus that propagated with wild-type kinetics in culture and lacked vector attenuation in a mouse neurovirulence model. CONCLUSION: Conversion of a herpesvirus infectious clone into a self-excising variant enables rapid production of viruses lacking bacterial vector sequences, and removes the requirement to initially propagate viruses in cells that express Cre recombinase. The self-excising bacterial artificial chromosome described here allows for efficient production of the F strain of herpes simplex virus type 1.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Clonagem de Organismos/métodos , Melhoramento Genético/métodos , HIV-1/genética , Carga Viral/genética , Animais , Integrases/genética , Camundongos , Recombinação Genética/genética , Virulência/genética
4.
J Virol ; 88(10): 5462-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24599989

RESUMO

UNLABELLED: In cells infected with herpesviruses, two capsid-associated, or inner tegument, proteins, UL37 and UL36, control cytosolic trafficking of capsids by as yet poorly understood mechanisms. Here, we report the crystal structure of the N-terminal half of UL37 from pseudorabies virus, an alphaherpesvirus closely related to herpes simplex viruses and varicella-zoster virus. The structure--the first for any alphaherpesvirus inner tegument protein--reveals an elongated molecule of a complex architecture rich in helical bundles. To explore the function of the UL37 N terminus, we used the three-dimensional framework provided by the structure in combination with evolutionary trace analysis to pinpoint several surface-exposed regions of potential functional importance and test their importance using mutagenesis. This approach identified a novel functional region important for cell-cell spread. These results suggest a novel role for UL37 in intracellular virus trafficking that promotes spread of viral infection, a finding that expands the repertoire of UL37 functions. Supporting this, the N terminus of UL37 shares structural similarity with cellular multisubunit tethering complexes (MTCs), which control vesicular trafficking in eukaryotic cells by tethering transport vesicles to their destination membranes. Our results suggest that UL37 could be the first viral MTC mimic and provide a structural rationale for the importance of UL37 for viral trafficking. We propose that herpesviruses may have co-opted the MTC functionality of UL37 to bring capsids to cytoplasmic budding destinations and further on to cell junctions for spread to nearby cells. IMPORTANCE: To move within an infected cell, viruses encode genes for proteins that interact with host trafficking machinery. In cells infected with herpesviruses, two capsid-associated proteins control the cytosolic movement of capsids by as yet poorly understood mechanisms. Here, we report the crystal structure for the N-terminal half of one of these proteins, UL37. Structure-based mutagenesis revealed a novel function for UL37 in virus trafficking to cell junctions for cell-cell spread. The unexpected structural similarity to components of cellular multisubunit tethering complexes, which control vesicular traffic, suggests that UL37 could be the first viral MTC mimic and provides a structural basis for the importance of UL37 for virus trafficking.


Assuntos
Herpesvirus Suídeo 1/química , Herpesvirus Suídeo 1/fisiologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Liberação de Vírus , Sequência de Aminoácidos , Animais , Linhagem Celular , Cristalografia por Raios X , Análise Mutacional de DNA , Herpesvirus Suídeo 1/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Proteínas Estruturais Virais/genética
5.
Exp Cell Res ; 327(2): 340-52, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25128814

RESUMO

While cellular LC3B and SQSTM1 levels serve as key autophagy markers, their regulation by different signaling pathways requires better understanding. Here, we report the mechanisms by which the Raf/MEK/ERK pathway regulates cellular LC3B and SQSTM1 levels. In different cell types, ΔRaf-1:ER- or B-Raf(V600E)-mediated MEK/ERK activation increased LC3B-I, LC3B-II, and SQSTM1/p62 levels, which was accompanied by increased BiP/GRP78 expression. Use of the autophagy inhibitors chloroquine and bafilomycin A1, or RNA interference of ATG7, suggested that these increases in LC3B and SQSTM1 levels were in part attributed to altered autophagic flux. However, intriguingly, these increases were also attributed to their increased expression. Upon Raf/MEK/ERK activation, mRNA levels of LC3B and SQSTM1 were also increased, and subsequent luciferase reporter analyses suggested that SQSTM1 upregulation was mediated at transcription level. Under this condition, transcription of BiP/GRP78 was also increased, which was necessary for Raf/MEK/ERK to regulate LC3B at the protein, but not mRNA, level. This suggests that BiP has a role in regulating autophagy machinery when Raf/MEK/ERK is activated. In conclusion, these results suggest that, under a Raf/MEK/ERK-activated condition, the steady-state cellular levels of LC3B and SQSTM1 can also be determined by their altered expression wherein BiP is utilized as an effector of the signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Choque Térmico/genética , MAP Quinase Quinase 1/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias da Próstata/patologia , Quinases raf/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Autofagia , Western Blotting , Proliferação de Células , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Humanos , MAP Quinase Quinase 1/genética , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Sequestossoma-1 , Quinases raf/genética
6.
J Virol ; 87(18): 9966-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23760248

RESUMO

The autophagic degradation pathway is a powerful tool in the host cell arsenal against cytosolic pathogens. Contents trapped inside cytosolic vesicles, termed autophagosomes, are delivered to the lysosome for degradation. In spite of the degradative nature of the pathway, some pathogens are able to subvert autophagy for their benefit. In many cases, these pathogens have developed strategies to induce the autophagic signaling pathway while inhibiting the associated degradation activity. One surprising finding from recent literature is that some viruses do not impede degradation but instead promote the generation of degradative autolysosomes, which are the endpoint compartments of autophagy. Dengue virus, poliovirus, and hepatitis C virus, all positive-strand RNA viruses, utilize the maturation of autophagosomes into acidic and ultimately degradative compartments to promote their replication. While the benefits that each virus reaps from autophagosome maturation are unique, the parallels between the viruses indicate a complex relationship between cytosolic viruses and host cell degradation vesicles.


Assuntos
Autofagia , Vírus da Dengue/fisiologia , Hepacivirus/fisiologia , Poliovirus/fisiologia , Replicação Viral , Interações Hospedeiro-Patógeno , Humanos
7.
PLoS Pathog ; 8(11): e1003046, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209416

RESUMO

The autophagic pathway acts as part of the immune response against a variety of pathogens. However, several pathogens subvert autophagic signaling to promote their own replication. In many cases it has been demonstrated that these pathogens inhibit or delay the degradative aspect of autophagy. Here, using poliovirus as a model virus, we report for the first time bona fide autophagic degradation occurring during infection with a virus whose replication is promoted by autophagy. We found that this degradation is not required to promote poliovirus replication. However, vesicular acidification, which in the case of autophagy precedes delivery of cargo to lysosomes, is required for normal levels of virus production. We show that blocking autophagosome formation inhibits viral RNA synthesis and subsequent steps in the virus cycle, while inhibiting vesicle acidification only inhibits the final maturation cleavage of virus particles. We suggest that particle assembly, genome encapsidation, and virion maturation may occur in a cellular compartment, and we propose the acidic mature autophagosome as a candidate vesicle. We discuss the implications of our findings in understanding the late stages of poliovirus replication, including the formation and maturation of virions and egress of infectious virus from cells.


Assuntos
Autofagia , Fagossomos/metabolismo , Poliomielite/metabolismo , Poliovirus/fisiologia , Vírion/metabolismo , Montagem de Vírus/fisiologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Fagossomos/virologia , Replicação Viral/fisiologia
9.
mBio ; 5(2): e00833-13, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24570367

RESUMO

Poliovirus (PV), a model for interactions of picornaviruses with host cells, replicates its genomic RNA in association with cellular membranes. The origin of PV replication membranes has not been determined. Hypotheses about the origin of replication membranes, based largely on localization of viral proteins, include modification of coat protein complex I (COPI) and/or COPII secretory pathway vesicles and subversion of autophagic membranes. Here, we use an antibody against double-stranded RNA (dsRNA) to identify replication complexes by detection of dsRNA replication intermediates. dsRNA signal is dependent on virus genome replication and colocalizes with the viral integral membrane protein 3A, which is part of the RNA replication complex. We show that early in infection, dsRNA does not colocalize with a marker for autophagic vesicles, making it unlikely that autophagosomes contribute to the generation of PV RNA replication membranes. We also find that dsRNA does not colocalize with a marker of the COPII coat, Sec31, and, in fact, we demonstrate proteasome-dependent loss of full-length Sec31 during PV infection. These data indicate that COPII vesicles are an unlikely source of PV replication membranes. We show that the Golgi resident G-protein Arf1 and its associated guanine nucleotide exchange factor (GEF), GBF1, transiently colocalize with dsRNA early in infection. In uninfected cells, Arf1 nucleates COPI coat formation, although during infection the COPI coat itself does not colocalize with dsRNA. Phosphatidylinositol-4-phosphate, which is associated with enterovirus-induced vesicles, tightly colocalizes with Arf1/GBF1 throughout infection. Our data point to a noncanonical role for some of the COPI-generating machinery in producing unique replication surfaces for PV RNA replication. IMPORTANCE Picornaviruses are a diverse and major cause of human disease, and their genomes replicate in association with intracellular membranes. There are multiple hypotheses to explain the nature and origin of these membranes, and a complete understanding of the host requirements for membrane rearrangement would provide novel drug targets essential for viral genome replication. Here, we study the model picornavirus, poliovirus, and show that some, but not all, components of the cellular machinery required for retrograde traffic from the Golgi apparatus to the endoplasmic reticulum are transiently present at the sites of viral RNA replication. We also show that the full-length Sec31 protein, which has been suggested to be present on PV RNA replication membranes, is lost during infection in a proteasome-dependent manner. This study helps to reconcile multiple hypotheses about the origin of poliovirus replication membranes and points to known host cell protein complexes that would make likely drug targets to inhibit picornavirus infections.


Assuntos
Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Organelas/virologia , Poliovirus/fisiologia , Replicação Viral , Humanos
10.
Autophagy ; 9(5): 806-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23439228

RESUMO

Several years ago, an explosion of research into pathogens and autophagy showed that viruses have a wide variety of relationships to this conserved homeostatic pathway. Often, autophagy acts as a host defense mechanism, degrading viruses before they can escape the host cell, and, as such, autophagy is suppressed or avoided by those viruses. A subset of viruses, however, induces and subverts the autophagic machinery to promote their own replication. Many of these viruses inhibit the degradative step in the autophagic pathway, presumably to prevent degradation of cytosolic virions before they exit the cell. Recently, we published a study showing that poliovirus (PV), a well-studied model virus, induces true autophagic degradation. The remainder of our study provided surprising clues about the role of autophagy in promoting virus production. The purpose of this punctum is to discuss the significance of our findings to a general understanding of the autophagic pathway and its relationship to a common class of cellular pathogens.


Assuntos
Ácidos/metabolismo , Autofagia , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/virologia , Poliovirus/patogenicidade , Modelos Biológicos , Poliovirus/fisiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA