Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2318615121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416685

RESUMO

The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here, we report the cryogenic electron microscopy structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.


Assuntos
GTP Fosfo-Hidrolases , Complexo de Golgi , Complexo de Golgi/metabolismo , Fatores de Ribosilação do ADP/metabolismo
2.
J Biol Chem ; 299(3): 102949, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708921

RESUMO

Human uridine 5'-monophosphate synthase (HsUMPS) is a bifunctional enzyme that catalyzes the final two steps in de novo pyrimidine biosynthesis. The individual orotate phosphoribosyl transferase and orotidine monophosphate domains have been well characterized, but little is known about the overall structure of the protein and how the organization of domains impacts function. Using a combination of chromatography, electron microscopy, and complementary biophysical methods, we report herein that HsUMPS can be observed in two structurally distinct states, an enzymatically active dimeric form and a nonactive multimeric form. These two states readily interconvert to reach an equilibrium that is sensitive to perturbations of the active site and the presence of substrate. We determined that the smaller molecular weight form of HsUMPS is an S-shaped dimer that can self-assemble into relatively well-ordered globular condensates. Our analysis suggests that the transition between dimer and multimer is driven primarily by oligomerization of the orotate phosphoribosyl transferase domain. While the cellular distribution of HsUMPS is unaffected, quantification by mass spectrometry revealed that de novo pyrimidine biosynthesis is dysregulated when this protein is unable to assemble into inactive condensates. Taken together, our data suggest that HsUMPS self-assembles into biomolecular condensates as a means to store metabolic potential for the regulation of metabolic rates.


Assuntos
Condensados Biomoleculares , Orotato Fosforribosiltransferase , Orotidina-5'-Fosfato Descarboxilase , Uridina Monofosfato , Humanos , Orotato Fosforribosiltransferase/metabolismo , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Pirimidinas/biossíntese , Uridina , Uridina Monofosfato/metabolismo
3.
EMBO J ; 31(21): 4191-203, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23000721

RESUMO

Cargo adaptors control intracellular trafficking of transmembrane proteins by sorting them into membrane transport carriers. The COPI, COPII, and clathrin cargo adaptors are structurally well characterized, but other cargo adaptors remain poorly understood. Exomer is a specialized cargo adaptor that sorts specific proteins into trans-Golgi network (TGN)-derived vesicles in response to cellular signals. Exomer is recruited to the TGN by the Arf1 GTPase, a universally conserved trafficking regulator. Here, we report the crystal structure of a tetrameric exomer complex composed of two copies each of the Chs5 and Chs6 subunits. The structure reveals the FN3 and BRCT domains of Chs5, which together we refer to as the FBE domain (FN3-BRCT of exomer), project from the exomer core complex. The overall architecture of the FBE domain is reminiscent of the appendage domains of other cargo adaptors, although it exhibits a distinct topology. In contrast to appendage domains, which bind accessory factors, we show that the primary role of the FBE domain is to bind Arf1 for recruitment of exomer to membranes.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Quitina Sintase/química , Quitina Sintase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Rede trans-Golgi/metabolismo , Membrana Celular/metabolismo , Cristalografia por Raios X , Complexo de Golgi/metabolismo , Lipossomos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/crescimento & desenvolvimento
4.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045260

RESUMO

The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here we report the cryoEM structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.

5.
Proc Natl Acad Sci U S A ; 106(32): 13329-34, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19651599

RESUMO

The proper glycosylation of proteins trafficking through the Golgi apparatus depends upon the conserved oligomeric Golgi (COG) complex. Defects in COG can cause fatal congenital disorders of glycosylation (CDGs) in humans. The recent discovery of a form of CDG, caused in part by a COG4 missense mutation changing Arg 729 to Trp, prompted us to determine the 1.9 A crystal structure of a Cog4 C-terminal fragment. Arg 729 is found to occupy a key position at the center of a salt bridge network, thereby stabilizing Cog4's small C-terminal domain. Studies in HeLa cells reveal that this C-terminal domain, while not needed for the incorporation of Cog4 into COG complexes, is essential for the proper glycosylation of cell surface proteins. We also find that Cog4 bears a strong structural resemblance to exocyst and Dsl1p complex subunits. These complexes and others have been proposed to function by mediating the initial tethering between transport vesicles and their membrane targets; the emerging structural similarities provide strong evidence of a common evolutionary origin and may reflect shared mechanisms of action.


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Cristalografia por Raios X , Análise Mutacional de DNA , Inativação Gênica , Glicosilação , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína
6.
PLoS One ; 17(10): e0275023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264993

RESUMO

Klebsiella pneumoniae is a bacterial pathogen that is increasingly responsible for hospital-acquired pneumonia and sepsis. Progressive development of antibiotic resistance has led to higher mortality rates and creates a need for novel treatments. Because of the essential role that nucleotides play in many bacterial processes, enzymes involved in purine and pyrimidine metabolism and transport are ideal targets for the development of novel antibiotics. Herein we describe the structure of K. pneumoniae adenosine monophosphate nucleosidase (KpAmn), a purine salvage enzyme unique to bacteria, as determined by cryoelectron microscopy. The data detail a well conserved fold with a hexameric overall structure and clear density for the putative active site residues. Comparison to the crystal structures of homologous prokaryotic proteins confirms the presence of many of the conserved structural features of this protein yet reveals differences in distal loops in the absence of crystal contacts. This first cryo-EM structure of an Amn enzyme provides a basis for future structure-guided drug development and extends the accuracy of structural characterization of this family of proteins beyond this clinically relevant organism.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Microscopia Crioeletrônica , N-Glicosil Hidrolases , Antibacterianos , Purinas , Nucleotídeos , Monofosfato de Adenosina , Pirimidinas , Infecções por Klebsiella/microbiologia
7.
Cells ; 10(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685583

RESUMO

Nucleotides are essential to cell growth and survival, providing cells with building blocks for DNA and RNA, energy carriers, and cofactors. Mitochondria have a critical role in the production of intracellular ATP and participate in the generation of intermediates necessary for biosynthesis of macromolecules such as purines and pyrimidines. In this review, we highlight the role of purine and mitochondrial metabolism in cancer and how their intersection influences cancer progression, especially in ovarian cancer. Additionally, we address the importance of metabolic rewiring in cancer and how the evolving landscape of purine synthesis and mitochondria inhibitors can be potentially exploited for cancer treatment.


Assuntos
Mitocôndrias/metabolismo , Neoplasias/metabolismo , Purinas/metabolismo , DNA/metabolismo , Humanos , Pirimidinas/metabolismo , RNA/metabolismo
8.
Elife ; 52016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26765562

RESUMO

The Golgi complex is the central sorting compartment of eukaryotic cells. Arf guanine nucleotide exchange factors (Arf-GEFs) regulate virtually all traffic through the Golgi by activating Arf GTPase trafficking pathways. The Golgi Arf-GEFs contain multiple autoregulatory domains, but the precise mechanisms underlying their function remain largely undefined. We report a crystal structure revealing that the N-terminal DCB and HUS regulatory domains of the Arf-GEF Sec7 form a single structural unit. We demonstrate that the established role of the N-terminal region in dimerization is not conserved; instead, a C-terminal autoinhibitory domain is responsible for dimerization of Sec7. We find that the DCB/HUS domain amplifies the ability of Sec7 to activate Arf1 on the membrane surface by facilitating membrane insertion of the Arf1 amphipathic helix. This enhancing function of the Sec7 N-terminal domains is consistent with the high rate of Arf1-dependent trafficking to the plasma membrane necessary for maximal cell growth.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Saccharomyces cerevisiae/enzimologia , Cristalografia por Raios X , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
9.
Methods Cell Biol ; 130: 101-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26360031

RESUMO

The ADP ribosylation factor (Arf) family of small guanosine triphosphatases (GTPases) regulates vesicular transport at several locations within the cell, and is in turn regulated by guanine nucleotide exchange factors (GEFs) via a conserved catalytic domain, termed the Sec7 domain. The catalytic activity of the Sec7 domain is well characterized in the context of a few GEFs acting at the periphery of the cell. This chapter describes the techniques used to extend the biochemical analysis of activity to the much larger GEFs acting on the Arf family in the core secretory pathway, using the activity of Saccharomyces cerevisiae Sec7 on Arf1, regulating export from the trans-Golgi network, as a model. The complete methods for purification to near homogeneity of all proteins required, including several Sec7 constructs and multiple relevant small GTPases, are detailed. These are followed by methods for the quantification of the nucleotide exchange activity of Sec7 in a physiologically relevant context, including modifications required to dissect the signal integration functions of Sec7 as an effector of several other small GTPases, and methods for identifying stable Sec7-small GTPase interactions in the presence of membranes. These techniques may be extended to the analysis of similar members of the Sec7 GEF subfamily in other species and acting elsewhere in the secretory pathway.


Assuntos
Fator 1 de Ribosilação do ADP/química , Fatores de Troca do Nucleotídeo Guanina/química , Fator 1 de Ribosilação do ADP/isolamento & purificação , Animais , Baculoviridae/genética , Linhagem Celular , Cromatografia de Afinidade , Cromatografia em Gel , Ensaios Enzimáticos , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Cinética , Lipossomos/química , Mariposas , Transporte Proteico , Saccharomyces cerevisiae/enzimologia
10.
Trends Cell Biol ; 25(7): 408-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25795254

RESUMO

Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Complexo de Golgi/metabolismo , Vesículas Transportadoras/metabolismo , Fator 1 de Ribosilação do ADP/genética , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Transporte Biológico , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Vesículas Transportadoras/química
11.
Structure ; 21(3): 486-92, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23395181

RESUMO

Exomer is a cargo adaptor that mediates the sorting of specific plasma membrane proteins into vesicles at the trans-Golgi network. Cargo adaptors must bind to multiple partners, including their cargo, regulatory proteins, and the membrane surface. During biogenesis of a vesicle, the membrane makes a transition from a relatively flat surface to one of high curvature, requiring cargo adaptors to somehow maintain protein-protein and protein-membrane interactions on a changing membrane environment. Here, we present the crystal structure of a tetrameric Chs5/Bch1 exomer complex and use small-angle X-ray scattering to demonstrate its flexibility in solution. The structural data suggest that the complex flexes primarily around the dimeric N-terminal domain of the Chs5 subunits, which adopts a noncanonical ß sandwich fold. We propose that this flexible hinge domain enables exomer to maintain interactions in the context of a dynamic membrane environment.


Assuntos
Quitina Sintase/química , Glicoproteínas de Membrana/química , Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sítios de Ligação , Quitina Sintase/genética , Cristalografia por Raios X , Escherichia coli/genética , Cinética , Glicoproteínas de Membrana/genética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Termodinâmica , Rede trans-Golgi/química
12.
Small GTPases ; 3(4): 240-3, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22996016

RESUMO

Members of the highly conserved Arf family of small GTPases serve as master regulators of vesicular transport. In yeast, Arf1 acts at the Golgi and trans-Golgi network (TGN) to recruit vesicular coat proteins and other effectors for both anterograde and retrograde transport. Arf1 is activated at the TGN by Sec7, the founding member of the Sec7 family of guanine nucleotide exchange factors (GEFs) and a close homolog of the human ARFGEF2 implicated in congenital defects in cerebral cortex development. Through the use of purified Sec7 in biochemical assays, we recently discovered that autoinhibition of Sec7 is relieved by stable recruitment to lipid membranes by activated Arf1. This interaction is mediated by a conserved domain proximal to, but not including, the GEF domain, creating a positive feedback loop in the activation of Arf1 at the TGN. We further demonstrated that this stable interaction with Arf1 plays a role in localizing Sec7 to the TGN. We elaborate here on the implications of these results to small GTPase-mediated cellular processes and coincidence detection models of GEF localization.


Assuntos
Proteínas Fúngicas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Rede trans-Golgi/metabolismo , Animais , Homeostase , Humanos , Leveduras/metabolismo
13.
Dev Cell ; 22(4): 799-810, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22516198

RESUMO

Arf GTPases are key regulators of both retrograde and anterograde traffic at the Golgi complex. The Golgi-localized Arf activators, Arf-GEFs (guanine exchange factor) of the BIG/GBF family, are poorly understood in terms of both their regulatory and localization mechanisms. We have performed a detailed kinetic characterization of a functional Golgi Arf-GEF, the trans-Golgi network (TGN)-localized Sec7 protein from yeast. We demonstrate that Sec7 is regulated by both autoinhibition and positive feedback. We show that positive feedback arises through the stable recruitment of Sec7 to membranes via its HDS1 domain by interaction with its product, activated Arf1. This interaction mediates localization of Sec7 to the TGN, because deletion of the HDS1 domain or mutation of the HDS1 domain in combination with deletion of Arf1 significantly increases cytoplasmic localization of Sec7. Our results lead us to propose a model in which Arf-GEF recruitment is linked to Golgi maturation via Arf1 activation.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Retroalimentação Fisiológica , Regulação Fúngica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Saccharomyces cerevisiae/metabolismo , Rede trans-Golgi/metabolismo , Fatores de Ribosilação do ADP/genética , Membrana Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Lipossomos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
15.
J Cell Biol ; 188(1): 101-14, 2010 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-20065092

RESUMO

Macroautophagy is a catabolic pathway used for the turnover of long-lived proteins and organelles in eukaryotic cells. The morphological hallmark of this process is the formation of double-membrane autophagosomes that sequester cytoplasm. Autophagosome formation is the most complex part of macroautophagy, and it is a dynamic event that likely involves vesicle fusion to expand the initial sequestering membrane, the phagophore; however, essentially nothing is known about this process including the molecular components involved in vesicle tethering and fusion. In this study, we provide evidence that the subunits of the conserved oligomeric Golgi (COG) complex are required for double-membrane cytoplasm to vacuole targeting vesicle and autophagosome formation. COG subunits localized to the phagophore assembly site and interacted with Atg (autophagy related) proteins. In addition, mutations in the COG genes resulted in the mislocalization of Atg8 and Atg9, which are critical components involved in autophagosome formation.


Assuntos
Autofagia , Vesículas Citoplasmáticas/metabolismo , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
16.
J Biol Chem ; 282(32): 23418-26, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17565980

RESUMO

The conserved oligomeric Golgi (COG) complex is strongly implicated in retrograde vesicular trafficking within the Golgi apparatus. Although its mechanism of action is poorly understood, it has been proposed to function by mediating the initial physical contact between transport vesicles and their membrane targets. An analogous role in tethering vesicles has been suggested for at least six additional large multisubunit complexes, including the exocyst, a complex essential for trafficking to the plasma membrane. Here we report the solution structure of a large portion of yeast Cog2p, one of eight subunits composing the COG complex. The structure reveals a six-helix bundle with few conserved surface features but a general resemblance to recently determined crystal structures of four different exocyst subunits. This finding provides the first structural evidence that COG, like the exocyst and potentially other tethering complexes, is constructed from helical bundles. These structures may represent platforms for interaction with other trafficking proteins including SNAREs (soluble N-ethylmaleimide factor attachment protein receptors) and Rabs.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Membrana Celular/metabolismo , Proteínas Fúngicas/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular
17.
Mol Biol Evol ; 22(7): 1539-42, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15858209

RESUMO

During the course of a pilot genome project for the ciliate Oxytricha trifallax, we discovered a fusion gene never before described in any taxa. This gene, FSF1, encodes a putative fusion protein comprising an entire formaldehyde dehydrogenase (FALDH) homolog at one end and an S-formylglutathione hydrolase (SFGH) homolog at the other, two proteins that catalyze serial steps in the formaldehyde detoxification pathway. We confirmed the presence of the Oxytricha fusion gene in vivo and detected transcripts of the full-length fusion gene. A survey of other large-scale sequencing projects revealed a similar fusion protein in a distantly related ciliate, Tetrahymena thermophila, and a possible fusion of these two genes in the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, but in the reverse order, with the SFGH domain encoded upstream of the FALDH domain. Orthologs of these fusion proteins may be widespread within the ciliates and diatoms.


Assuntos
Diatomáceas/genética , Formaldeído/metabolismo , Genes de Protozoários , Oxytricha/genética , Sequência de Aminoácidos , Animais , Diatomáceas/metabolismo , Inativação Metabólica , Dados de Sequência Molecular , Oxytricha/metabolismo , Tetrahymena/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA