Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurosurg Focus ; 56(2): E2, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301244

RESUMO

OBJECTIVE: Several studies have compared the immune microenvironment of isocitrate dehydrogenase (IDH)-wildtype glioma versus IDH-mutant glioma. The authors sought to determine whether histological tumor progression in a subset of IDH-mutant glioma was associated with concomitant alterations in the intratumoral immune microenvironment. METHODS: The authors performed bulk RNA sequencing on paired and unpaired samples from patients with IDH-mutant glioma who underwent surgery for tumor progression across multiple timepoints. They compared patterns of differential gene expression, overall inflammatory signatures, and transcriptomic measures of relative immune cell proportions. RESULTS: A total of 55 unique IDH-mutant glioma samples were included in the analysis. The authors identified multiple genes associated with progression and higher grade across IDH-mutant oligodendrogliomas and astrocytomas. Compared with lower-grade paired samples, grade 4 IDH-mutant astrocytomas uniquely demonstrated upregulation of VEGFA in addition to counterproductive alterations in inflammatory score reflective of a more hostile immune microenvironment. CONCLUSIONS: Here, the authors have provided a transcriptomic analysis of a progression cohort for IDH-mutant glioma. Compared with lower-grade tumors, grade 4 astrocytomas displayed alterations that may inform the timing of antiangiogenic and immune-based therapy as these tumors progress.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Regulação para Cima , Mutação/genética , Glioma/genética , Glioma/patologia , Astrocitoma/genética , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Pharmacol Ther ; 259: 108667, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763321

RESUMO

This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Animais , Microambiente Tumoral/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia
3.
Clin Cancer Res ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042445

RESUMO

PURPOSE: Mutations in the isocitrate dehydrogenase (IDH) genes IDH1 and IDH2 have critical diagnostic and prognostic significance in diffuse gliomas. Neomorphic mutant IDH activity has been previously implicated in T-cell suppression; however, the effects of IDH mutations on intratumoral myeloid populations remain underexplored. Here, we investigate the influence of IDH status on the myeloid compartment using human glioma specimens and preclinical models. EXPERIMENTAL DESIGN: We performed RNA-sequencing and quantitative immunofluorescence on newly diagnosed, treatment-naive IDH-mutant grade 4 astrocytoma and IDH-wildtype glioblastoma (GBM) specimens. We also generated a syngeneic murine model, comparing transcriptomic and cell-level changes in paired isogenic glioma lines that differ only in IDH mutational status. RESULTS: Among patient samples, IDH-mutant tumors displayed underrepresentation of suppressive myeloid transcriptional signatures, which was confirmed at the cellular level with decreased numbers of intratumoral M2-like macrophages and MDSCs. Introduction of the IDH-mutant enzyme into murine glioma was sufficient to recapitulate the transcriptomic and cellular shifts observed in patient samples. CONCLUSIONS: We provide transcriptomic and cellular evidence that mutant IDH is associated with a quantitative reduction of suppressive myeloid cells in gliomas and that introduction of the mutant enzyme is sufficient to result in corresponding cellular changes using an in vivo preclinical model. These data advance our understanding of high-grade gliomas by identifying key myeloid cell populations that are reprogrammed by mutant-IDH and may be targetable through therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA