RESUMO
Pre-operative planning and intra-operative guidance in neurosurgery require detailed information about the location of functional areas and their anatomo-functional connectivity. In particular, regarding the language system, post-operative deficits such as aphasia can be avoided. By combining functional magnetic resonance imaging and diffusion tensor imaging, the connectivity between functional areas can be reconstructed by tractography techniques that need to cope with limitations such as limited resolution and low anisotropic diffusion close to functional areas. Tumors pose particular challenges because of edema, displacement effects on brain tissue and infiltration of white matter. Under these conditions, standard fiber tracking methods reconstruct pathways of insufficient quality. Therefore, robust global or probabilistic approaches are required. In this study, two commonly used standard fiber tracking algorithms, streamline propagation and tensor deflection, were compared with a previously published global search, Gibbs tracking and a connection-oriented probabilistic tractography approach. All methods were applied to reconstruct neuronal pathways of the language system of patients undergoing brain tumor surgery, and control subjects. Connections between Broca and Wernicke areas via the arcuate fasciculus (AF) and the inferior fronto-occipital fasciculus (IFOF) were validated by a clinical expert to ensure anatomical feasibility, and compared using distance- and diffusion-based similarity metrics to evaluate their agreement on pathway locations. For both patients and controls, a strong agreement between all methods was observed regarding the location of the AF. In case of the IFOF however, standard fiber tracking and Gibbs tracking predominantly identified the inferior longitudinal fasciculus that plays a secondary role in semantic language processing. In contrast, global search resolved connections in almost every case via the IFOF which could be confirmed by probabilistic fiber tracking. The results show that regarding the language system, our global search is superior to clinically applied conventional fiber tracking strategies with results similar to time-consuming global or probabilistic approaches.
Assuntos
Algoritmos , Neoplasias Encefálicas/cirurgia , Encéfalo/cirurgia , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: The most frequently used method for fiber tractography based on diffusion tensor imaging (DTI) is associated with restrictions in the resolution of crossing or kissing fibers and in the vicinity of tumor or edema. Tractography based on high-angular-resolution diffusion imaging (HARDI) is capable of overcoming this restriction. With compressed sensing (CS) techniques, HARDI acquisitions with a smaller number of directional measurements can be used, thus enabling the use of HARDI-based fiber tractography in clinical practice. OBJECTIVE: To investigate whether HARDI+CS-based fiber tractography improves the display of neuroanatomically complex pathways and in areas of disturbed diffusion properties. METHODS: Six patients with gliomas in the vicinity of language-related areas underwent 3-T magnetic resonance imaging including a diffusion-weighted data set with 30 gradient directions. Additionally, functional magnetic resonance imaging for cortical language sites was obtained. Fiber tractography was performed with deterministic streamline algorithms based on DTI using 3 different software platforms. Additionally, tractography based on reconstructed diffusion signals using HARDI+CS was performed. RESULTS: HARDI+CS-based tractography displayed more compact fiber bundles compared with the DTI-based results in all cases. In 3 cases, neuroanatomically plausible fiber bundles were displayed in the vicinity of tumor and peritumoral edema, which could not be traced on the basis of DTI. The curvature around the sylvian fissure was displayed properly in 6 cases and in only 2 cases with DTI-based tractography. CONCLUSION: HARDI+CS seems to be a promising approach for fiber tractography in clinical practice for neuroanatomically complex fiber pathways and in areas of disturbed diffusion, overcoming the problem of long acquisition times.
Assuntos
Neoplasias Encefálicas/patologia , Imagem de Tensor de Difusão/métodos , Glioma/patologia , Adulto , Idoso , Edema Encefálico/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Vias Neurais/patologia , Neuroanatomia/métodos , Estudos ProspectivosRESUMO
BACKGROUND: For neuroepithelial tumors, the surgical goal is maximum resection with preservation of neurological function. This is contributed to by intraoperative magnetic resonance imaging (iMRI) combined with multimodal navigation. OBJECTIVE: We evaluated the contribution of diffusion tensor imaging (DTI)-based fiber tracking of language pathways with 2 different algorithms (tensor deflection, connectivity analysis [CA]) integrated in the navigation on the surgical outcome. METHODS: We evaluated 32 patients with neuroepithelial tumors who underwent surgery with DTI-based fiber tracking of language pathways integrated in neuronavigation. The tensor deflection algorithm was routinely used and its results intraoperatively displayed in all cases. The CA algorithm was furthermore evaluated in 23 cases. Volumetric assessment was performed in pre- and intraoperative MR images. To evaluate the benefit of fiber tractography, language deficits were evaluated pre- and postoperatively and compared with the volumetric analysis. RESULTS: Final gross-total resection was performed in 40.6% of patients. Absolute tumor volume was reduced from 55.33 ± 63.77 cm(3) to 20.61 ± 21.67 cm(3) in first iMRI resection control, to finally 11.56 ± 21.92 cm(3) (P < .01). Fiber tracking of the 2 algorithms showed a deviation of the displayed 3D objects by <5 mm. In long-term follow-up only 1 patient (3.1%) had a persistent language deficit. CONCLUSION: Intraoperative visualization of language-related cortical areas and the connecting pathways with DTI-based fiber tracking can be successfully performed and integrated in the navigation system. In a setting of intraoperative high-field MRI this contributes to maximum tumor resection with low postoperative morbidity.
Assuntos
Algoritmos , Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Idioma , Vias Neurais , Neuronavegação/métodos , Cirurgia Assistida por Computador/métodos , Adulto , Idoso , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória/métodos , Adulto JovemRESUMO
Diffusion tensor and functional MRI data provide insight into function and structure of the human brain. However, connectivity analysis between functional areas is still a challenge when using traditional fiber tracking techniques. For this reason, alternative approaches incorporating the entire tensor information have emerged. Based on previous research employing pathfinding for connectivity analysis, we present a novel search grid and an improved cost function which essentially contributes to more precise paths. Additionally, implementation aspects are considered making connectivity analysis very efficient which is crucial for surgery planning. In comparison to other algorithms, the presented technique is by far faster while providing connections of comparable quality. The clinical relevance is demonstrated by reconstructed connections between motor and sensory speech areas in patients with lesions located in between.