Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747477

RESUMO

Carbon burial is increasingly valued as a service provided by threatened vegetated coastal habitats. Similarly, shellfish reefs contain significant pools of carbon and are globally endangered, yet considerable uncertainty remains regarding shellfish reefs' role as sources (+) or sinks (-) of atmospheric CO2 While CO2 release is a by-product of carbonate shell production (then burial), shellfish also facilitate atmospheric-CO2 drawdown via filtration and rapid biodeposition of carbon-fixing primary producers. We provide a framework to account for the dual burial of inorganic and organic carbon, and demonstrate that decade-old experimental reefs on intertidal sandflats were net sources of CO2 (7.1 ± 1.2 MgC ha-1 yr-1 (µ ± s.e.)) resulting from predominantly carbonate deposition, whereas shallow subtidal reefs (-1.0 ± 0.4 MgC ha-1 yr-1) and saltmarsh-fringing reefs (-1.3 ± 0.4 MgC ha-1 yr-1) were dominated by organic-carbon-rich sediments and functioned as net carbon sinks (on par with vegetated coastal habitats). These landscape-level differences reflect gradients in shellfish growth, survivorship and shell bioerosion. Notably, down-core carbon concentrations in 100- to 4000-year-old reefs mirrored experimental-reef data, suggesting our results are relevant over centennial to millennial scales, although we note that these natural reefs appeared to function as slight carbon sources (0.5 ± 0.3 MgC ha-1 yr-1). Globally, the historical mining of the top metre of shellfish reefs may have reintroduced more than 400 000 000 Mg of organic carbon into estuaries. Importantly, reef formation and destruction do not have reciprocal, counterbalancing impacts on atmospheric CO2 since excavated organic material may be remineralized while shell may experience continued preservation through reburial. Thus, protection of existing reefs could be considered as one component of climate mitigation programmes focused on the coastal zone.


Assuntos
Sequestro de Carbono , Ecossistema , Ostreidae , Animais , Carbono/química , Dióxido de Carbono/química
2.
Sci Rep ; 10(1): 19755, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184392

RESUMO

Barrier island overwash occurs when the elevation of wave runup exceeds the dune crest and induces landward transport of sediment across a barrier island and deposition of a washover deposit. Washover deposition is generally attributed to major storms, is important for the maintenance of barrier island resilience to sea-level rise and is used to extend hurricane records beyond historical accounts by reconstructing the frequency and extent of washover deposits preserved in the sedimentary record. Here, we present a high-fidelity 3-year record of washover evolution and overwash at a transgressive barrier island site. During the first year after establishment, washover volume and area increased 1595% and 197%, respectively, from at least monthly overwash. Most of the washover accretion resulted from the site morphology having a low resistance to overwash, as opposed to being directly impacted by major storms. Washover deposits can accrete landward over multi-year time scales in the absence of large storms; therefore, paleotempestites can be more complex than single event beds.

3.
Ecol Evol ; 7(23): 10409-10420, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29238564

RESUMO

Ecosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef (Crassostrea virginica) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs (n = 3) constructed in 1997 and 2000, young reefs (n = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and restoration.

4.
Sci Rep ; 5: 14785, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26442712

RESUMO

Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species' ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20-40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR.


Assuntos
Recifes de Corais , Crassostrea/fisiologia , Animais , Aquicultura , Crassostrea/crescimento & desenvolvimento , Ecossistema , Modelos Teóricos , North Carolina , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA