Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628592

RESUMO

The ocular surface is in constant interaction with the environment and with numerous pathogens. Therefore, complex mechanisms such as a stable tear film and local immune defense mechanisms are required to protect the eye. This study describes the detection, characterization, and putative role of surfactant protein G (SP-G/SFTA2) with respect to wound healing and surface activity. Bioinformatic, biochemical, and immunological methods were combined to elucidate the role of SP-G in tear film. The results show the presence of SP-G in ocular surface tissues and tear film (TF). Increased expression of SP-G was demonstrated in TF of patients with dry eye disease (DED). Addition of recombinant SP-G in combination with lipids led to an accelerated wound healing of human corneal cells as well as to a reduction of TF surface tension. Molecular modeling of TF suggest that SP-G may regulate tear film surface tension and improve its stability through specific interactions with lipids components of the tear film. In conclusion, SP-G is an ocular surface protein with putative wound healing properties that can also reduce the surface tension of the tear film.


Assuntos
Síndromes do Olho Seco , Lágrimas , Córnea/metabolismo , Síndromes do Olho Seco/metabolismo , Humanos , Lipídeos/análise , Tensão Superficial , Lágrimas/metabolismo
2.
Int J Pharm ; 645: 123367, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666309

RESUMO

Glaucoma is a leading cause of blindness worldwide, with elevated intraocular pressure being a major risk factor for its development and progression. First-line treatment for glaucoma relies on the administration of prostaglandin analogs, with latanoprost being the most widely used. However, before latanoprost reaches the cornea, it must pass through the tear film and tear film lipid layer (TFLL) on the ocular surface. Given the significant lipophilicity of latanoprost, we hypothesize that TFLL could, to a certain extent, act as a reservoir for latanoprost, releasing it on longer time scales, apart from the fraction being directly delivered to the cornea in a post-instillation mechanism. We investigated this possibility by studying latanoprost behavior in acellular in vitro TFLL models. Furthermore, we employed in silico molecular dynamics simulations to rationalize the experimental results and obtain molecular-level insight into the latanoprost-TFLL interactions. Our experiments demonstrated that latanoprost indeed accumulates in the TFLL models, and our simulations explain the basis of the accumulation mechanism. These results support the hypothesis that TFLL can serve as a reservoir for latanoprost, facilitating its prolonged release. This finding could have significant implications for optimizing glaucoma treatment, especially in the development of new drug delivery systems targeting the TFLL.


Assuntos
Glaucoma , Humanos , Latanoprosta/uso terapêutico , Glaucoma/tratamento farmacológico , Lágrimas , Córnea , Simulação por Computador , Anti-Hipertensivos/uso terapêutico , Pressão Intraocular
3.
Eur J Pharm Biopharm ; 186: 65-73, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933811

RESUMO

Benzalkonium chloride (BAK) compounds are commonly used in topical ophthalmic products as preservatives and stabilizers. BAK mixtures containing several compounds with different alkyl chain lengths are typically used. However, in chronic eye conditions, such as dry eye disease and glaucoma, the accumulation of adverse effects of BAKs was observed. Hence, preservative-free eye drops formulations are preferred. On the other hand, selected long-chain BAKs, particularly cetalkonium chloride, exhibit therapeutic functions, promoting epithelium wound healing and tear film stability. Nevertheless, the mechanism of BAKs influence on the tear film is not fully understood. By employing in vitro experimental and in silico simulation techniques, we elucidate the action of BAKs and demonstrate that long-chain BAKs accumulate in the lipid layer of the tear film model, stabilizing it in a concentration-dependent fashion. In contrast, short-chain BAKs interacting with the lipid layer compromise the tear film model stability. These findings are relevant for topical ophthalmic drug formulation and delivery in the context of selecting proper BAK species and understanding the dose dependency for tear film stability.


Assuntos
Síndromes do Olho Seco , Conservantes Farmacêuticos , Humanos , Conservantes Farmacêuticos/farmacologia , Compostos de Benzalcônio/efeitos adversos , Lágrimas , Síndromes do Olho Seco/tratamento farmacológico , Soluções Oftálmicas , Lipídeos/farmacologia
4.
Biochim Biophys Acta Biomembr ; 1864(4): 183866, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007517

RESUMO

In light of an increasing number of antibiotic-resistant bacterial strains, it is essential to understand an action imposed by various antimicrobial agents on bacteria at the molecular level. One of the leading mechanisms of killing bacteria is related to the alteration of their plasmatic membrane. We study bio-inspired peptides originating from natural antimicrobial proteins colicins, which can disrupt membranes of bacterial cells. Namely, we focus on the α-helix H1 of colicin U, produced by bacterium Shigella boydii, and compare it with analogous peptides derived from two different colicins. To address the behavior of the peptides in biological membranes, we employ a combination of molecular simulations and experiments. We use molecular dynamics simulations to show that all three peptides are stable in model zwitterionic and negatively charged phospholipid membranes. At the molecular level, their embedment leads to the formation of membrane defects, membrane permeation for water, and, for negatively charged lipids, membrane poration. These effects are caused by the presence of polar moieties in the considered peptides. Importantly, simulations demonstrate that even monomeric H1 peptides can form toroidal pores. At the macroscopic level, we employ experimental co-sedimentation and fluorescence leakage assays. We show that the H1 peptide of colicin U incorporates into phospholipid vesicles and disrupts their membranes, causing leakage, in agreement with the molecular simulations. These insights obtained for model systems seem important for understanding the mechanisms of antimicrobial action of natural bacteriocins and for future exploration of small bio-inspired peptides able to disrupt bacterial membranes.


Assuntos
Colicinas/metabolismo , Fosfolipídeos/química , Lipossomas Unilamelares/metabolismo , Sequência de Aminoácidos , Colicinas/química , Colicinas/farmacologia , Simulação de Dinâmica Molecular , Permeabilidade/efeitos dos fármacos , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Conformação Proteica em alfa-Hélice , Shigella boydii/metabolismo , Lipossomas Unilamelares/química
5.
ACS Appl Mater Interfaces ; 12(11): 12426-12435, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32098467

RESUMO

Interactions at the solid-body fluid interfaces play a vital role in bone tissue formation at the implant surface. In this study, fully atomistic molecular dynamics (MD) simulations were performed to investigate interactions between the physiological components of body fluids (Ca2+, HPO42-, H2PO4-, Na+, Cl-, and H2O) and functionalized parylene C surface. In comparison to the native parylene C (-Cl surface groups), the introduction of -OH, -CHO, and -COOH surface groups significantly enhances the interactions between body fluid ions and the polymeric surface. The experimentally observed formation of calcium phosphate nanocrystals is discussed in terms of MD simulations of the calcium phosphate clustering. Surface functional groups promote the clustering of calcium and phosphate ions in the following order: -OH > -CHO > -Cl (parent parylene C) ≈ -COO-. This promoting role of surface functional groups is explained as stimulating the number of Ca2+ and HPO42- surface contacts as well as ion chemisorption. The molecular mechanism of calcium phosphate cluster formation at the functionalized parylene C surface is proposed.

6.
Chem Phys Lipids ; 203: 78-86, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28043845

RESUMO

Interactions of two neurosteroids, inhibiting membrane-bound N-Methyl-d-aspartate receptors, with phospholipid membranes are studied. Namely, endogenous pregnanolone sulfate is compared with pregnanolone glutamate, the latter being a novel synthetic steroidal inhibitor of these receptors with potential pharmaceutical use. Molecular-level details of steroid-phospholipid membranes interactions are scrutinized employing molecular dynamics simulations supported by quantum chemical calculations to assess steroid lipophilicity. Moreover, permeability of both species across membranes is experimentally evaluated by immobilized artificial membrane chromatography. We demonstrate that while there is no significant difference of lipophilicity and membrane permeability between the two steroids, they differ significantly regarding detailed localization in phospholipid membranes. The bulky glutamate moiety of pregnanolone glutamate is flexible and well exposed to the water phase while the sulfate group of pregnanolone sulfate is hidden in the membrane headgroup region. This dissimilarity of behavior in membranes can potentially account for the observed different activities of the two steroids toward membrane-bound N-Methyl-d-aspartate receptors.


Assuntos
Membrana Celular/química , Neurotransmissores/química , Conformação Molecular , Simulação de Dinâmica Molecular , Permeabilidade , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA