Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(13): e2300721, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615246

RESUMO

Crescent-shaped hydrogel microparticles are shown to template uniform volume aqueous droplets upon simple mixing with aqueous and oil media for various bioassays. This emerging "lab on a particle" technique requires hydrogel particles with tunable material properties and dimensions. The crescent shape of the particles is attained by aqueous two-phase separation of polymers followed by photopolymerization of the curable precursor. In this work, the phase separation of poly(ethylene glycol) diacrylate (PEGDA, Mw 700) and dextran (Mw 40 000) for tunable manufacturing of crescent-shaped particles is investigated. The particles' morphology is precisely tuned by following a phase diagram, varying the UV intensity, and adjusting the flow rates of various streams. The fabricated particles with variable dimensions encapsulate uniform aqueous droplets upon mixing with an oil phase. The particles are fluorescently labeled with red and blue emitting dyes at variable concentrations to produce six color-coded particles. The blue fluorescent dye shows a moderate response to the pH change. The fluorescently labeled particles are able to tolerate an extremely acidic solution (pH 1) but disintegrate within an extremely basic solution (pH 14). The particle-templated droplets are able to effectively retain the disintegrating particle and the fluorescent signal at pH 14.


Assuntos
Dextranos , Tamanho da Partícula , Polietilenoglicóis , Polietilenoglicóis/química , Dextranos/química , Concentração de Íons de Hidrogênio , Hidrogéis/química , Hidrogéis/síntese química , Propriedades de Superfície , Corantes Fluorescentes/química , Polimerização , Água/química
2.
Angew Chem Int Ed Engl ; : e202406848, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972850

RESUMO

The synthesis of group IV metallocene precatalysts for the polymerization of propylene generally yields two different isomers: The racemic isomer that produces isotactic polypropylene (iPP) and the meso isomer that produces atactic polypropylene (aPP). Due to its poor physical properties, aPP has very limited applications. To avoid obtaining blends of both polymers and thus diminish the mechanical and thermal properties of iPP, the meso metallocene complexes need to be separated from the racemic ones tediously-rendering the metallocene-based polymerization of propylene industrially far less attractive than the Ziegler/Natta process. To overcome this issue, we established an isomerization protocol to convert meso metallocene complexes into their racemic counterparts. This protocol increased the yield of iPP by 400 % while maintaining the polymer's excellent physical properties and was applicable to both hafnocene and zirconocene complexes, as well as different precatalyst activation methods. Through targeted variation of the ligand frameworks, methoxy groups at the indenyl moieties were found to be the structural motifs responsible for an isomerization to take place-this experimental evidence was confirmed by density functional theory calculations. Liquid injection field desorption ionization mass spectrometry, as well as 1H and 29Si nuclear magnetic resonance studies, allowed the proposal of an isomerization mechanism.

3.
Angew Chem Int Ed Engl ; 63(10): e202315326, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38226704

RESUMO

A novel single-atom Ni(II) catalyst (Ni-OH) is covalently immobilized onto the nano-channels of mesoporous Santa Barbara Amorphous (SBA)-15 particles and isotropic Anodized Aluminum Oxide (AAO) membrane for confined-space ethylene extrusion polymerization. The presence of surface-tethered Ni complexes (Ni@SBA-15 and Ni@AAO) is confirmed by the inductively coupled plasma-optical emission spectrometry (ICP-OES) and X-ray photoelectron spectroscopy (XPS). In the catalytic spinning process, the produced PE materials exhibit very homogeneous fibrous morphology at nanoscale (diameter: ~50 nm). The synthesized PE nanofibers extrude in a highly oriented manner from the nano-reactors at ambient temperature. Remarkably high Mw (1.62×106  g mol-1 ), melting point (124 °C), and crystallinity (41.8 %) are observed among PE samples thanks to the confined-space polymerization. The chain-walking behavior of surface tethered Ni catalysts is greatly limited by the confinement inside the nano-channels, leading to the formation of very low-branched PE materials (13.6/1000 C). Due to fixed supported catalytic topology and room temperature, the filaments are expected to be free of entanglement. This work signifies an important step towards the realization of a continuous mild catalytic-spinning (CATSPIN) process, where the polymer is directly synthesized into fiber shape at negligible chain branching and elegantly avoiding common limitations like thermal degradation or molecular entanglement.

4.
Orthop Res Rev ; 16: 43-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318227

RESUMO

Purpose: To report the development of a new sacroiliac joint (SIJ) arthrodesis system that can be used for isolated fusion of the SIJ and, unlike known implant systems, in combination with lumbar instrumentation or as an alternative to existing sacropelvic fixation (SPF) methods, and the patient-reported outcomes in two cases. Materials and Methods: After a comprehensive review of 207 pelvic computed tomography (CT) datasets, an implant body was designed. Its shape was modeled based on the SIJ recess. A screw anchored in the ilium secures the position of the implant and allows connection to lumbar instrumentation. Two patients with confirmed SIJ syndrome underwent surgery with the anatomically adapted implant. They were evaluated preoperatively, 6 months, and 12 months postoperatively. Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), Million Visual Analogue Scale (MVAS), Roland Morris Score (RMS), reduction of SIJ/leg pain, and work status were assessed. Bony fusion of the SIJ was evaluated by radiographs and CT 12 months after the procedure. Results: Analysis of pelvic CT data revealed a wedge-shaped implant body in four different sizes. In the two patients, VAS decreased from 88 to 33 points, ODI improved from 67 to 35%, MVAS decreased from 80 to 36%, and RMS decreased from 18 to 9 points 12 months after surgery. SIJ pain reduction was 80% and 90%, respectively. Follow-up CT and radiographs showed solid bony integration. Conclusion: The implant used takes into account the unique anatomy of the SIJ and also meets the requirements of a true arthrodesis. Initial results in two patients are promising. Biomechanical and clinical studies will have to show whether the considerable theoretical advantages of the new implant system over existing SIJ implants - in particular the possibility of connection to a lumbar stabilization system - and SPFs can be put into practice.

6.
Microorganisms ; 12(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39065087

RESUMO

The salt-tolerant marine microalgae Dunaliella tertiolecta is reported to generate significant amounts of intracellular glycerol as an osmoprotectant under high salt conditions. This study highlights the phylogenetic distribution and comparative glycerol biosynthesis of seven new Dunaliella isolates compared to a D. tertiolecta reference strain. Phylogenetic analysis indicates that all Dunaliella isolates are newly discovered and do not relate to the D. tertiolecta reference. Several studies have identified light color and intensity and salt concentration alone as the most inducing factors impacting glycerol productivity. This study aims to optimize glycerol production by investigating these described factors singularly and in combination to improve the glycerol product titer. Glycerol production data indicate that cultivation with white light of an intensity between 500 and 2000 µmol m-2 s-1 as opposed to 100 µmol m-2 s-1 achieves higher biomass and thereby higher glycerol titers for all our tested Dunaliella strains. Moreover, applying higher light intensity in a cultivation of 1.5 M NaCl and an increase to 3 M NaCl resulted in hyperosmotic stress conditions, providing the highest glycerol titer. Under these optimal light intensity and salt conditions, the glycerol titer of D. tertiolecta could be doubled to 0.79 mg mL-1 in comparison to 100 µmol m-2 s-1 and salt stress to 2 M NaCl, and was higher compared to singularly optimized conditions. Furthermore, under the same conditions, glycerol extracts from new Dunaliella isolates did provide up to 0.94 mg mL-1. This highly pure algae-glycerol obtained under optimal production conditions can find widespread applications, e.g., in the pharmaceutical industry or the production of sustainable carbon fibers.

7.
RSC Adv ; 14(12): 8145-8149, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38464693

RESUMO

A modular synthetic pathway for poly(diethyl vinylphosphonates) grafting-to gold nanoparticles is presented. Utilising an azide-dopamine derivative as nanoparticle coating agent, alkyne-azide click conditions were used to covalently tether the polymer to gold nanoparticles leading to stable and well distributed colloids for different applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA