Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 30(1): 127-137, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831592

RESUMO

Bone marrow-derived mesenchymal stem cells (MSCs) differentiate into osteoblasts upon stimulation by signals present in their niche. Because the global signaling cascades involved in the early phases of MSCs osteoblast (OB) differentiation are not well-defined, we used quantitative mass spectrometry to delineate changes in human MSCs proteome and phosphoproteome during the first 24 h of their OB lineage commitment. The temporal profiles of 6252 proteins and 15,059 phosphorylation sites suggested at least two distinct signaling waves: one peaking within 30 to 60 min after stimulation and a second upsurge after 24 h. In addition to providing a comprehensive view of the proteome and phosphoproteome dynamics during early MSCs differentiation, our analyses identified a key role of serine/threonine protein kinase D1 (PRKD1) in OB commitment. At the onset of OB differentiation, PRKD1 initiates activation of the pro-osteogenic transcription factor RUNX2 by triggering phosphorylation and nuclear exclusion of the histone deacetylase HDAC7.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Proteômica , Humanos , Filogenia , Proteômica/métodos
2.
EMBO J ; 36(5): 646-663, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093501

RESUMO

As a central element within the RAS/ERK pathway, the serine/threonine kinase BRAF plays a key role in development and homeostasis and represents the most frequently mutated kinase in tumors. Consequently, it has emerged as an important therapeutic target in various malignancies. Nevertheless, the BRAF activation cycle still raises many mechanistic questions as illustrated by the paradoxical action and side effects of RAF inhibitors. By applying SEC-PCP-SILAC, we analyzed protein-protein interactions of hyperactive BRAFV600E and wild-type BRAF (BRAFWT). We identified two macromolecular, cytosolic BRAF complexes of distinct molecular composition and phosphorylation status. Hyperactive BRAFV600E resides in large complexes of higher molecular mass and activity, while BRAFWT is confined to smaller, slightly less active complexes. However, expression of oncogenic K-RasG12V, either by itself or in combination with RAF dimer promoting inhibitors, induces the incorporation of BRAFWT into large, active complexes, whereas pharmacological inhibition of BRAFV600E has the opposite effect. Thus, the quaternary structure of BRAF complexes is shaped by its activation status, the conformation of its kinase domain, and clinically relevant inhibitors.


Assuntos
Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Células Cultivadas , Cromatografia em Gel , Humanos , Espectrometria de Massas , Camundongos , Fosforilação , Conformação Proteica
3.
Scand J Gastroenterol ; 56(3): 304-311, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33602032

RESUMO

OBJECTIVES: Single nucleotide polymorphisms within the interferon lambda 4 (IFNL4) gene influence liver inflammation and fibrosis in chronic liver disease. We investigated whether this is also the case during acute liver disease, alcoholic hepatitis. We, therefore, related variants within the IFNL4 gene to the clinical course of acute alcoholic hepatitis, and characterized the activation state of the IFN lambda system in these patients. METHODS: In this pilot study, 58 patients with alcoholic hepatitis were genotyped for the rs368234815IFNL4 single nucleotide polymorphism (deltaG, deltaG/TT: IFN lambda 4 positive, TT/TT: IFN lambda 4 negative). The genotypes were related to mortality, infection and inflammation and expression of the IFNL receptor 1 and IFN inducible genes were measured in liver and peripheral leukocytes. RESULTS: Amongst the alcoholic hepatitis patients who died, the IFN negative patients live longer after diagnosis, and also the IFN negative patients tended to have an overall short-term survival benefit compared to IFN lambda positive patients (p = .058). The IFN lambda 4 negative patients at diagnosis had fewer circulating monocytes and lower plasma soluble CD163. The patients with alcoholic hepatitis had reduced expression of the IFNL receptor 1in both liver and blood compared with healthy controls. In blood, the expression of IFN stimulated genes was lower than in healthy controls and most so in the patients, who died. CONCLUSIONS: The IFN lambda 4 pathway seems involved in the acute disease processes of alcoholic hepatitis and patients without IFN lambda expression seem to have a short-term survival benefit.


Assuntos
Hepatite Alcoólica , Antivirais , Genótipo , Hepacivirus , Hepatite Alcoólica/genética , Humanos , Interferons , Interleucinas/genética , Projetos Piloto , Polimorfismo de Nucleotídeo Único
4.
Mol Cell ; 51(6): 707-22, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24011590

RESUMO

The stimulation of fibroblast growth factor receptors (FGFRs) with distinct FGF ligands generates specific cellular responses. However, the mechanisms underlying this paradigm have remained elusive. Here, we show that FGF-7 stimulation leads to FGFR2b degradation and, ultimately, cell proliferation, whereas FGF-10 promotes receptor recycling and cell migration. By combining mass-spectrometry-based quantitative proteomics with fluorescence microscopy and biochemical methods, we find that FGF-10 specifically induces the rapid phosphorylation of tyrosine (Y) 734 on FGFR2b, which leads to PI3K and SH3BP4 recruitment. This complex is crucial for FGFR2b recycling and responses, given that FGF-10 stimulation of either FGFR2b_Y734F mutant- or SH3BP4-depleted cells switches the receptor endocytic route to degradation, resulting in decreased breast cancer cell migration and the inhibition of epithelial branching in mouse lung explants. Altogether, these results identify an intriguing ligand-dependent mechanism for the control of receptor fate and cellular outputs that may explain the pathogenic role of deregulated FGFR2b, thus offering therapeutic opportunities.


Assuntos
Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Proteômica , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Movimento Celular , Ligantes , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteólise , Tirosina/metabolismo
5.
BMC Gastroenterol ; 20(1): 210, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631250

RESUMO

BACKGROUND: Animal models of non-alcoholic steatohepatitis (NASH) are important tools in preclinical research and drug discovery. Gubra-Amylin NASH (GAN) diet-induced obese (DIO) mice represent a model of fibrosing NASH. The present study directly assessed the clinical translatability of the model by head-to-head comparison of liver biopsy histological and transcriptome changes in GAN DIO-NASH mouse and human NASH patients. METHODS: C57Bl/6 J mice were fed chow or the GAN diet rich in saturated fat (40%), fructose (22%) and cholesterol (2%) for ≥38 weeks. Metabolic parameters as well as plasma and liver biomarkers were assessed. Liver biopsy histology and transcriptome signatures were compared to samples from human lean individuals and patients diagnosed with NASH. RESULTS: Liver lesions in GAN DIO-NASH mice showed similar morphological characteristics compared to the NASH patient validation set, including macrosteatosis, lobular inflammation, hepatocyte ballooning degeneration and periportal/perisinusoidal fibrosis. Histomorphometric analysis indicated comparable increases in markers of hepatic lipid accumulation, inflammation and collagen deposition in GAN DIO-NASH mice and NASH patient samples. Liver biopsies from GAN DIO-NASH mice and NASH patients showed comparable dynamics in several gene expression pathways involved in NASH pathogenesis. Consistent with the clinical features of NASH, GAN DIO-NASH mice demonstrated key components of the metabolic syndrome, including obesity and impaired glucose tolerance. CONCLUSIONS: The GAN DIO-NASH mouse model demonstrates good clinical translatability with respect to the histopathological, transcriptional and metabolic aspects of the human disease, highlighting the suitability of the GAN DIO-NASH mouse model for identifying therapeutic targets and characterizing novel drug therapies for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações
6.
Am J Physiol Gastrointest Liver Physiol ; 316(4): G462-G472, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653341

RESUMO

Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of conditions ranging from simple steatosis (NAFL), over nonalcoholic steatohepatitis (NASH) with or without fibrosis, to cirrhosis with end-stage disease. The hepatic molecular events underlying the development of NAFLD and transition to NASH are poorly understood. The present study aimed to determine hepatic transcriptome dynamics in patients with NAFL or NASH compared with healthy normal-weight and obese individuals. RNA sequencing and quantitative histomorphometry of liver fat, inflammation and fibrosis were performed on liver biopsies obtained from healthy normal-weight ( n = 14) and obese ( n = 12) individuals, NAFL ( n = 15) and NASH ( n = 16) patients. Normal-weight and obese subjects showed normal liver histology and comparable gene expression profiles. Liver transcriptome signatures were largely overlapping in NAFL and NASH patients, however, clearly separated from healthy normal-weight and obese controls. Most marked pathway perturbations identified in both NAFL and NASH were associated with markers of lipid metabolism, immunomodulation, extracellular matrix remodeling, and cell cycle control. Interestingly, NASH patients with positive Sonic hedgehog hepatocyte staining showed distinct transcriptome and histomorphometric changes compared with NAFL. In conclusion, application of immunohistochemical markers of hepatocyte injury may serve as a more objective tool for distinguishing NASH from NAFL, facilitating improved resolution of hepatic molecular changes associated with progression of NAFLD. NEW & NOTEWORTHY Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in Western countries. NAFLD is associated with the metabolic syndrome and can progress to the more serious form, nonalcoholic steatohepatitis (NASH), and ultimately lead to irreversible liver damage. Using gold standard molecular and histological techniques, this study demonstrates that the currently used diagnostic tools are problematic for differentiating mild NAFLD from NASH and emphasizes the marked need for developing improved histological markers of NAFLD progression.


Assuntos
Tecido Adiposo , Perfilação da Expressão Gênica/métodos , Inflamação , Cirrose Hepática , Fígado , Hepatopatia Gordurosa não Alcoólica , Obesidade , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Índice de Massa Corporal , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/diagnóstico , Obesidade/metabolismo
7.
Liver Int ; 39(11): 2094-2101, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31386258

RESUMO

BACKGROUND & AIMS: We recently showed that the functional capacity for ureagenesis is deficient in non-alcoholic fatty liver disease (NAFLD) patients. The aim of this study was to assess expression of urea cycle-related genes to elucidate a possible gene regulatory basis to the functional problem. METHODS: Liver mRNA expression analyses within the gene pathway governing hepatic nitrogen conversion were performed in 20 non-diabetic, biopsy-proven NAFLD patients (8 simple steatosis; 12 non-alcoholic steatohepatitis [NASH]) and 12 obese and 14 lean healthy individuals. Sixteen NAFLD patients were included for gene expression validation. Relationship between gene expressions and functional capacity for ureagenesis was described. RESULTS: Gene expression of most urea cycle-related enzymes were downregulated in NAFLD vs both control groups; markedly so for the urea cycle flux-generating carbamoyl phosphate synthetase (CPS1) (~3.5-fold, P < .0001). In NASH, CPS1 downregulation paralleled the deficit in ureagenesis (P = .03). Additionally, expression of several genes involved in amino acid uptake and degradation, and the glucagon receptor gene, were downregulated in NAFLD. Conversely, glutamine synthetase (GS) expression increased >1.5-fold (P ≤ .03), inversely related to CPS1 expression (P = .004). CONCLUSIONS: NAFLD downregulated the expression of urea cycle-related genes. Downregulation of urea cycle flux-generating CPS1 correlated with the loss of functional capacity for ureagenesis in NASH. On gene level, these changes coincided with an increase in the major ammonia scavenging enzyme GS. The effects seemed related to a fatty liver as such rather than NASH or obesity. The findings support gene regulatory mechanisms involved in the deficient ureagenesis of NAFLD, but it remains unexplained how hepatocyte fat accumulation exerts these effects.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Regulação Enzimológica da Expressão Gênica , Hepatopatia Gordurosa não Alcoólica/genética , Ureia/metabolismo , Adulto , Amônia/metabolismo , Estudos de Casos e Controles , Feminino , Glutamato-Amônia Ligase/genética , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/metabolismo , Transcriptoma
8.
Dig Dis Sci ; 64(5): 1238-1256, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30511198

RESUMO

BACKGROUND: There is a marked need for improved animal models of nonalcoholic steatohepatitis (NASH) to facilitate the development of more efficacious drug therapies for the disease. METHODS: Here, we investigated the development of fibrotic NASH in male Wistar rats fed a choline-deficient L-amino acid-defined (CDAA) diet with or without cholesterol supplementation for subsequent assessment of drug treatment efficacy in NASH biopsy-confirmed rats. The metabolic profile and liver histopathology were evaluated after 4, 8, and 12 weeks of dieting. Subsequently, rats with biopsy-confirmed NASH were selected for pharmacological intervention with vehicle, elafibranor (30 mg/kg/day) or obeticholic acid (OCA, 30 mg/kg/day) for 5 weeks. RESULTS: The CDAA diet led to marked hepatomegaly and fibrosis already after 4 weeks of feeding, with further progression of collagen deposition and fibrogenesis-associated gene expression during the 12-week feeding period. Cholesterol supplementation enhanced the stimulatory effect of CDAA on gene transcripts associated with fibrogenesis without significantly increasing collagen deposition. Pharmacological intervention with elafibranor, but not OCA, significantly reduced steatohepatitis scores, and fibrosis-associated gene expression, however, was unable to prevent progression in fibrosis scores. CONCLUSION: CDAA-fed rats develop early-onset progressive NASH, which offers the opportunity to probe anti-NASH compounds with potential disease-modifying properties.


Assuntos
Chalconas/uso terapêutico , Ácido Quenodesoxicólico/análogos & derivados , Colesterol/toxicidade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Nutrientes/deficiência , Propionatos/uso terapêutico , Animais , Ácido Quenodesoxicólico/uso terapêutico , Colesterol/administração & dosagem , Progressão da Doença , Masculino , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Wistar
9.
Mol Cell ; 40(5): 810-22, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145488

RESUMO

The intimate relationship between mediators of the ubiquitin (Ub)-signaling system and human diseases has sparked profound interest in how Ub influences cell death and survival. While the consequence of Ub attachment is intensely studied, little is known with regards to the effects of other Ub-like proteins (UBLs), and deconjugating enzymes that remove the Ub or UBL adduct. Systematic in vivo RNAi analysis identified three NEDD8-specific isopeptidases that, when knocked down, suppress apoptosis. Consistent with the notion that attachment of NEDD8 prevents cell death, genetic ablation of deneddylase 1 (DEN1) suppresses apoptosis. Unexpectedly, we find that Drosophila and human inhibitor of apoptosis (IAP) proteins can function as E3 ligases of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Finally, we demonstrate that DEN1 reverses this effect by removing the NEDD8 modification. Altogether, our findings indicate that IAPs not only modulate cellular processes via ubiquitylation but also through attachment of NEDD8, thereby extending the complexity of IAP-mediated signaling.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Interferência de RNA , Ubiquitina-Proteína Ligases/genética , Ubiquitina/metabolismo , Animais , Drosophila/metabolismo , Endopeptidases/metabolismo , Proteínas Inibidoras de Apoptose/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Mol Cell ; 32(4): 540-53, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19026784

RESUMO

Ubiquitin-mediated inactivation of caspases has long been postulated to contribute to the regulation of apoptosis. However, detailed mechanisms and functional consequences of caspase ubiquitylation have not been demonstrated. Here we show that the Drosophila Inhibitor of Apoptosis 1, DIAP1, blocks effector caspases by targeting them for polyubiquitylation and nonproteasomal inactivation. We demonstrate that the conjugation of ubiquitin to drICE suppresses its catalytic potential in cleaving caspase substrates. Our data suggest that ubiquitin conjugation sterically interferes with substrate entry and reduces the caspase's proteolytic velocity. Disruption of drICE ubiquitylation, either by mutation of DIAP1's E3 activity or drICE's ubiquitin-acceptor lysines, abrogates DIAP1's ability to neutralize drICE and suppress apoptosis in vivo. We also show that DIAP1 rests in an "inactive" conformation that requires caspase-mediated cleavage to subsequently ubiquitylate caspases. Taken together, our findings demonstrate that effector caspases regulate their own inhibition through a negative feedback mechanism involving DIAP1 "activation" and nondegradative polyubiquitylation.


Assuntos
Inibidores de Caspase , Ubiquitinação , Animais , Apoptose/genética , Apoptose/fisiologia , Caspases/genética , Caspases Efetoras/genética , Caspases Efetoras/metabolismo , Células Cultivadas , Drosophila/citologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Cinética , Modelos Biológicos , Peptídeo Hidrolases/metabolismo , Conformação Proteica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
11.
J Pept Sci ; 21(2): 85-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25521062

RESUMO

Neuromedin U (NMU) is a 25 amino acid peptide expressed and secreted in the brain and gastrointestinal tract. Data have shown that peripheral administration of human NMU decreases food intake and body weight and improves glucose tolerance in mice, suggesting that NMU receptors constitute a possible anti-diabetic and anti-obesity drug target. However, the clinical use of native NMU is hampered by a poor pharmacokinetic profile. In the current study, we report in vitro and in vivo data from a series of novel lipidated NMU analogs. In vitro plasma stability studies of native NMU were performed to investigate the proteolytic stability and cleavage sites using LC-MS. Native NMU was found to be rapidly cleaved at the C-terminus between Arg(24) and Asn(25) , followed by cleavage between Arg(16) and Gly(17) . Lipidated NMU analogs were generated using solid-phase peptide synthesis, and in vitro potency was investigated using a human embryonic kidney 293-based inositol phosphate accumulation assay. All lipidated analogs had preserved in vitro activity on both NMU receptors with potency improving as the lipidation site was moved away from the receptor-interacting C-terminal octapeptide segment. In vivo efficacy was assessed in lean mice as reduction in food intake after acute subcutaneous administration of 1, 0.3, 0.1, and 0.03 µmol/kg. These lipidated NMU analogs prolonged the anorectic effect of NMU in a dose-dependent manner. This was likely an effect of improved pharmacokinetic properties because of improved vitro plasma stability. Accordingly, the data demonstrate that lipidated NMU analogs may represent drug candidates for the treatment of obesity.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Neuropeptídeos/síntese química , Neuropeptídeos/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Células HEK293 , Humanos , Masculino , Camundongos , Neuropeptídeos/sangue , Neuropeptídeos/química , Estabilidade Proteica
12.
Semin Cell Dev Biol ; 23(8): 863-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22677334

RESUMO

Reversible protein phosphorylation is involved in the regulation of most, if not all, major cellular processes via dynamic signal transduction pathways. During the last decade quantitative phosphoproteomics have evolved from a highly specialized area to a powerful and versatile platform for analyzing protein phosphorylation at a system-wide scale and has become the intuitive strategy for comprehensive characterization of signaling networks. Contemporary phosphoproteomics use highly optimized procedures for sample preparation, mass spectrometry and data analysis algorithms to identify and quantify thousands of phosphorylations, thus providing extensive overviews of the cellular signaling networks. As a result of these developments quantitative phosphoproteomics have been applied to study processes as diverse as immunology, stem cell biology and DNA damage. Here we review the developments in phosphoproteomics technology that have facilitated the application of phosphoproteomics to signaling networks and introduce examples of recent system-wide applications of quantitative phosphoproteomics. Despite the great advances in phosphoproteomics technology there are still several outstanding issues and we provide here our outlook on the current limitations and challenges in the field.


Assuntos
Fosfoproteínas/análise , Proteômica/métodos , Transdução de Sinais , Animais , Humanos , Espectrometria de Massas , Fosforilação
13.
J Proteome Res ; 13(9): 4192-204, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25093938

RESUMO

Post-translational modification of proteins with the small polypeptide ubiquitin plays a pivotal role in many cellular processes, altering protein lifespan, location, and function and regulating protein-protein interactions. Ubiquitination exerts its diverse functions through complex mechanisms by formation of different polymeric chains and subsequent recognition of the ubiquitin signal by specific protein interaction domains. Despite some recent advances in the analytical tools for the analysis of ubiquitination by mass spectrometry, there is still a need for additional strategies suitable for investigation of cellular ubiquitination at the proteome level. Here, we present a stable tagged ubiquitin exchange (StUbEx) cellular system in which endogenous ubiquitin is replaced with an epitope-tagged version, thereby allowing specific and efficient affinity purification of ubiquitinated proteins for global analyses of protein ubiquitination. Importantly, the overall level of ubiquitin in the cell remains virtually unchanged, thus avoiding ubiquitination artifacts associated with overexpression. The efficiency and reproducibility of the method were assessed through unbiased analysis of epidermal growth factor (EGF) signaling by quantitative mass spectrometry, covering over 3400 potential ubiquitinated proteins. The StUbEx system is applicable to virtually any cell line and can be readily adapted to any of the ubiquitin-like post-translational modifications.


Assuntos
Marcação por Isótopo/métodos , Proteômica/métodos , Ubiquitina/química , Ubiquitina/metabolismo , Cromatografia de Afinidade/métodos , Bases de Dados de Proteínas , Células HeLa , Histidina , Humanos , Oligopeptídeos , Proteínas Recombinantes de Fusão , Reprodutibilidade dos Testes , Ubiquitinação
14.
Mol Syst Biol ; 9: 657, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23591773

RESUMO

The mammalian cellular microenvironment is shaped by soluble factors and structural components, the extracellular matrix, providing physical support, regulating adhesion and signalling. A global, quantitative mass spectrometry strategy, combined with bioinformatics data processing, was developed to assess proteome differences in the microenvironment of primary human fibroblasts. We studied secreted proteins of fibroblasts from normal and pathologically altered skin and their post-translational modifications. The influence of collagen VII, an important structural component, which is lost in genetic skin fragility, was used as model. Loss of collagen VII had a global impact on the cellular microenvironment and was associated with proteome alterations highly relevant for disease pathogenesis including decrease in basement membrane components, increase in dermal matrix proteins, TGF-ß and metalloproteases, but not higher protease activity. The definition of the proteome of fibroblast microenvironment and its plasticity in health and disease identified novel disease mechanisms and potential targets of intervention.


Assuntos
Membrana Basal/metabolismo , Microambiente Celular/genética , Colágeno Tipo VII/genética , Derme/metabolismo , Epidermólise Bolhosa Distrófica/genética , Matriz Extracelular/genética , Fibroblastos/metabolismo , Membrana Basal/patologia , Estudos de Casos e Controles , Comunicação Celular , Colágeno Tipo VII/deficiência , Derme/patologia , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Matriz Extracelular/patologia , Feminino , Fibroblastos/patologia , Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Metaloproteases/genética , Metaloproteases/metabolismo , Cultura Primária de Células , Processamento de Proteína Pós-Traducional , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
15.
PLoS One ; 19(4): e0300809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662778

RESUMO

The nuclear farnesoid X receptor (FXR), a master regulator of bile acid and metabolic homeostasis, is a key target for treatment of nonalcoholic steatohepatitis (NASH). This study compared efficacy of FXR agonists obeticholic acid (OCA) and INT-787 by liver histopathology, plasma biomarkers of liver damage, and hepatic gene expression profiles in the Amylin liver NASH (AMLN) diet-induced and biopsy-confirmed Lepob/ob mouse model of NASH. Lepob/ob mice were fed the AMLN diet for 12 weeks before liver biopsy and subsequent treatment with vehicle, OCA, or INT-787 for 8 weeks. Hepatic steatosis, inflammation, and fibrosis (liver lipids, galectin-3, and collagen 1a1 [Col1a1], respectively), as well as plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, were assessed. Hepatic gene expression was assessed in Lepob/ob mice that were fed the AMLN diet for 14 weeks then treated with vehicle, OCA, or INT-787 for 2 weeks. INT-787, which is equipotent to OCA but more hydrophilic, significantly reduced liver lipids, galectin-3, and Col1a1 compared with vehicle, and to a greater extent than OCA. INT-787 significantly reduced plasma ALT and AST levels, whereas OCA did not. INT-787 modulated a substantially greater number of genes associated with FXR signaling, lipid metabolism, and stellate cell activation relative to OCA in hepatic tissue. These findings demonstrate greater efficacy of INT-787 treatment compared with OCA in improving liver histopathology, decreasing liver enzyme levels, and enhancing gene regulation, suggesting superior clinical potential of INT-787 for the treatment of NASH and other chronic liver diseases.


Assuntos
Ácido Quenodesoxicólico , Ácido Quenodesoxicólico/análogos & derivados , Modelos Animais de Doenças , Fígado , Hepatopatia Gordurosa não Alcoólica , Receptores Citoplasmáticos e Nucleares , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/uso terapêutico , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Galectina 3/metabolismo , Galectina 3/genética
16.
Cell Commun Signal ; 11(1): 30, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23607741

RESUMO

BACKGROUND: The Gab2 docking protein acts as an important signal amplifier downstream of various growth factor receptors and Bcr-Abl, the driver of chronic myeloid leukaemia (CML). Despite the success of Bcr-Abl tyrosine kinase inhibitors (TKI) in the therapy of CML, TKI-resistance remains an unsolved problem in the clinic. We have recently shown that Gab2 signalling counteracts the efficacy of four distinct Bcr-Abl inhibitors. In the course of that project, we noticed that two clinically relevant drugs, imatinib and dasatinib, provoke distinct alterations in the electrophoretic mobility of Gab2, its signalling output and protein interactions. As the signalling potential of the docking protein is highly modulated by its phosphorylation status, we set out to obtain more insights into the impact of TKIs on Gab2 phosphorylation. FINDINGS: Using stable isotope labelling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry (MS), we show now that imatinib and dasatinib provoke distinct effects on the phosphorylation status and interactome of Gab2. This study identifies several new phosphorylation sites on Gab2 and confirms many sites previously known from other experimental systems. At equimolar concentrations, dasatinib is more effective in preventing Gab2 tyrosine and serine/threonine phosphorylation than imatinib. It also affects the phosphorylation status of more residues than imatinib. In addition, we also identify novel components of the Gab2 signalling complex, such as casein kinases, stathmins and PIP1 as well as known interaction partners whose association with Gab2 is disrupted by imatinib and/or dasatinib. CONCLUSIONS: By using MS-based proteomics, we have identified new and confirmed known phosphorylation sites and interaction partners of Gab2, which may play an important role in the regulation of this docking protein. Given the growing importance of Gab2 in several tumour entities we expect that our results will help to understand the complex regulation of Gab2 and how this docking protein can contribute to malignancy.

17.
Mol Cell Proteomics ; 10(8): O110.007450, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21602510

RESUMO

Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.


Assuntos
Software , Algoritmos , Análise por Conglomerados , Biologia Computacional , Gráficos por Computador , Interpretação Estatística de Dados , Redes e Vias Metabólicas , Proteômica , Transdução de Sinais
18.
Mol Cell Proteomics ; 9(11): 2482-96, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20631206

RESUMO

During recent years, increased efforts have focused on elucidating the secretory function of skeletal muscle. Through secreted molecules, skeletal muscle affects local muscle biology in an auto/paracrine manner as well as having systemic effects on other tissues. Here we used a quantitative proteomics platform to investigate the factors secreted during the differentiation of murine C2C12 skeletal muscle cells. Using triple encoding stable isotope labeling by amino acids in cell culture, we compared the secretomes at three different time points of muscle differentiation and followed the dynamics of protein secretion. We identified and quantitatively analyzed 635 secreted proteins, including 35 growth factors, 40 cytokines, and 36 metallopeptidases. The extensive presence of these proteins that can act as potent signaling mediators to other cells and tissues strongly highlights the important role of the skeletal muscle as a prominent secretory organ. In addition to previously reported molecules, we identified many secreted proteins that have not previously been shown to be released from skeletal muscle cells nor shown to be differentially released during the process of myogenesis. We found 188 of these secreted proteins to be significantly regulated during the process of myogenesis. Comparative analyses of selected secreted proteins revealed little correlation between their mRNA and protein levels, indicating pronounced regulation by posttranscriptional mechanisms. Furthermore, analyses of the intracellular levels of members of the semaphorin family and their corresponding secretion dynamics demonstrated that the release of secreted proteins is tightly regulated by the secretory pathway, the stability of the protein, and/or the processing of secreted proteins. Finally, we provide 299 unique hydroxyproline sites mapping to 48 distinct secreted proteins and have discovered a novel hydroxyproline motif.


Assuntos
Diferenciação Celular/fisiologia , Proteínas Musculares , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Marcação por Isótopo , Espectrometria de Massas/métodos , Camundongos , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mioblastos/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica/métodos , Semaforinas/genética , Semaforinas/metabolismo
19.
PLoS One ; 17(10): e0275901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260611

RESUMO

Non-invasive biomarkers of non-alcoholic fatty liver disease (NAFLD) supporting diagnosis and monitoring disease progression are urgently needed. The present study aimed to establish a bioinformatics pipeline capable of defining and validating NAFLD biomarker candidates based on paired hepatic global gene expression and plasma bioanalysis from individuals representing different stages of histologically confirmed NAFLD (no/mild, moderate, more advanced NAFLD). Liver secretome gene signatures were generated in a patient cohort of 26 severely obese individuals with the majority having no or mild fibrosis. To this end, global gene expression changes were compared between individuals with no/mild NAFLD and moderate/advanced NAFLD with subsequent filtering for candidate gene products with liver-selective expression and secretion. Four candidate genes, including LPA (lipoprotein A), IGFBP-1 (insulin-like growth factor-binding protein 1), SERPINF2 (serpin family F member 2) and MAT1A (methionine adenosyltransferase 1A), were differentially expressed in moderate/advanced NAFLD, which was confirmed in three independent RNA sequencing datasets from large, publicly available NAFLD studies. The corresponding gene products were quantified in plasma samples but could not discriminate among different grades of NAFLD based on NAFLD activity score. Conclusion: We demonstrate a novel approach based on the liver transcriptome allowing for identification of secreted hepatic gene products as potential circulating diagnostic biomarkers of NAFLD. Using this approach in larger NAFLD patient cohorts may yield potential circulating biomarkers for NAFLD severity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Serpinas , Somatomedinas , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Metionina Adenosiltransferase/genética , Secretoma , Serpinas/metabolismo , Biomarcadores , Somatomedinas/metabolismo , Lipoproteína(a)/metabolismo
20.
J Biol Chem ; 285(27): 20625-33, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20406808

RESUMO

GABA(B) receptors function as heterodimeric G-protein-coupled receptors for the neurotransmitter gamma-aminobutyric acid (GABA). Receptor subtypes, based on isoforms of the ligand-binding subunit GABA(B1), are thought to involve a differential set of associated proteins. Here, we describe two mouse lines that allow a straightforward biochemical isolation of GABA(B) receptors. The transgenic mice express GABA(B1) isoforms that contain sequences for a two-step affinity purification, in addition to their endogenous subunit repertoire. Comparative analyses of purified samples from the transgenic mice and wild-type control animals revealed two novel components of the GABA(B1) complex. One of the identified proteins, potassium channel tetramerization domain-containing protein 12, associates with heterodimeric GABA(B) receptors via the GABA(B2) subunit. In transfected hippocampal neurons, potassium channel tetramerization domain-containing protein 12 augmented axonal surface targeting of GABA(B2). The mice equipped with tags on GABA(B1) facilitate validation and identification of native binding partners of GABA(B) receptors, providing insight into the molecular mechanisms of synaptic modulation.


Assuntos
Receptores de GABA-B/fisiologia , Equorina/genética , Animais , Western Blotting , Encéfalo/fisiologia , Células CHO , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Cricetinae , Cricetulus , Éxons/genética , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Ratos , Receptores de GABA-B/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA